// Copyright (C) 2020 Sebastian Dröge // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Library General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Library General Public License for more details. // // You should have received a copy of the GNU Library General Public // License along with this library; if not, write to the // Free Software Foundation, Inc., 51 Franklin Street, Suite 500, // Boston, MA 02110-1335, USA. extern crate gstreamer as gst; extern crate gstreamer_app as gst_app; extern crate gstreamer_audio as gst_audio; extern crate gstreamer_check as gst_check; use glib::prelude::*; use gst::prelude::*; use byte_slice_cast::*; use std::sync::{Arc, Mutex}; fn init() { use std::sync::Once; static INIT: Once = Once::new(); INIT.call_once(|| { gst::init().unwrap(); gstrsaudiofx::plugin_register_static().expect("Failed to register rsaudiofx plugin"); }); } fn run_test( first_input: &str, second_input: Option<&str>, num_buffers: u32, samples_per_buffer: u32, channels: u32, expected_loudness: f64, ) { init(); let format = if cfg!(target_endian = "little") { format!("audio/x-raw,format=F64LE,rate=192000,channels={}", channels) } else { format!("audio/x-raw,format=F64BE,rate=192000,channels={}", channels) }; let pipeline = if let Some(second_input) = second_input { gst::parse_launch(&format!( "audiotestsrc {first_input} num-buffers={num_buffers} samplesperbuffer={samples_per_buffer} ! {format} ! audiomixer name=mixer output-buffer-duration={output_buffer_duration} ! {format} ! rsaudioloudnorm ! appsink name=sink audiotestsrc {second_input} num-buffers={num_buffers} samplesperbuffer={samples_per_buffer} ! {format} ! mixer.", first_input = first_input, second_input = second_input, num_buffers = num_buffers, samples_per_buffer = samples_per_buffer, output_buffer_duration = samples_per_buffer as u64 * gst::SECOND_VAL / 192_000, format = format, )) } else { gst::parse_launch(&format!( "audiotestsrc {first_input} num-buffers={num_buffers} samplesperbuffer={samples_per_buffer} ! {format} ! rsaudioloudnorm ! appsink name=sink", first_input = first_input, num_buffers = num_buffers, samples_per_buffer = samples_per_buffer, format = format, )) } .unwrap() .downcast::() .unwrap(); let sink = pipeline .get_by_name("sink") .unwrap() .downcast::() .unwrap(); sink.set_property("sync", &false).unwrap(); let caps = gst_audio::AudioInfo::builder(gst_audio::AUDIO_FORMAT_F64, 192_000, channels) .build() .unwrap() .to_caps() .unwrap(); sink.set_caps(Some(&caps)); let samples = Arc::new(Mutex::new(Vec::new())); let samples_clone = samples.clone(); sink.set_callbacks( gst_app::AppSinkCallbacks::builder() .new_sample(move |sink| { let sample = sink.pull_sample().unwrap(); let mut samples = samples_clone.lock().unwrap(); samples.push(sample); Ok(gst::FlowSuccess::Ok) }) .build(), ); pipeline.set_state(gst::State::Playing).unwrap(); let mut eos = false; let bus = pipeline.get_bus().unwrap(); while let Some(msg) = bus.timed_pop(gst::CLOCK_TIME_NONE) { use gst::MessageView; match msg.view() { MessageView::Eos(..) => { eos = true; break; } MessageView::Error(..) => unreachable!(), _ => (), } } pipeline.set_state(gst::State::Null).unwrap(); assert!(eos); let samples = samples.lock().unwrap(); let mut r128 = ebur128::EbuR128::new( channels, 192_000, ebur128::Mode::I | ebur128::Mode::SAMPLE_PEAK, ) .unwrap(); let mut num_samples = 0; let mut expected_ts = gst::ClockTime::from(0); for sample in samples.iter() { use std::cmp::Ordering; let buf = sample.get_buffer().unwrap(); let ts = buf.get_pts(); match ts.cmp(&expected_ts) { Ordering::Greater => { assert!( ts - expected_ts <= gst::ClockTime::from(1), "TS is {} instead of {}", ts, expected_ts ); } Ordering::Less => { assert!( expected_ts - ts <= gst::ClockTime::from(1), "TS is {} instead of {}", ts, expected_ts ); } Ordering::Equal => (), } let map = buf.map_readable().unwrap(); let data = map.as_slice_of::().unwrap(); num_samples += data.len() / channels as usize; r128.add_frames_f64(data).unwrap(); expected_ts += gst::ClockTime::from((data.len() as u64 / channels as u64) * gst::SECOND_VAL / 192_000); } assert_eq!( num_samples, num_buffers as usize * samples_per_buffer as usize ); let loudness = r128.loudness_global().unwrap(); if expected_loudness.classify() == std::num::FpCategory::Infinite && expected_loudness < 0.0 { assert!( loudness.classify() == std::num::FpCategory::Infinite && loudness < 0.0, "Loudness is {} instead of {}", loudness, expected_loudness, ); } else { assert!( f64::abs(loudness - expected_loudness) < 1.0, "Loudness is {} instead of {}", loudness, expected_loudness, ); } for c in 0..channels { let peak = 20.0 * f64::log10(r128.sample_peak(c).unwrap()); assert!( peak <= -2.0, "Peak {} for channel {} is above -2.0", c, peak, ); } } #[test] fn basic() { run_test("wave=sine", None, 1000, 1920, 1, -24.0); } #[test] fn basic_white_noise() { run_test("wave=white-noise", None, 1000, 1920, 1, -24.0); } #[test] fn remaining_at_eos() { run_test("wave=sine", None, 1000, 1024, 1, -24.0); } #[test] fn short_input() { run_test("wave=sine", None, 100, 1024, 1, -24.0); } #[test] fn basic_two_channels() { run_test("wave=sine", None, 1000, 1920, 2, -24.0); } #[test] fn silence() { run_test("wave=silence", None, 1000, 1024, 1, std::f64::NEG_INFINITY); } #[test] fn quiet() { // -6dB run_test("wave=sine volume=0.5", None, 1000, 1024, 1, -24.0); } #[test] fn very_quiet() { // -20dB run_test("wave=sine volume=0.1", None, 1000, 1024, 1, -24.0); } #[test] fn very_very_quiet() { // -40dB run_test("wave=sine volume=0.01", None, 1000, 1024, 1, -24.0); } #[test] fn below_threshold() { // -70dB run_test( "wave=sine volume=0.00045", None, 1000, 1024, 1, std::f64::NEG_INFINITY, ); } #[test] fn limiter() { run_test( "wave=sine volume=0.05", Some("wave=ticks sine-periods-per-tick=1 tick-interval=4000000000"), 1000, 1024, 1, -24.0, ); } #[test] fn limiter_on_first_frame() { run_test( "wave=sine volume=0.05", Some("wave=ticks sine-periods-per-tick=10 tick-interval=4000000000"), 1000, 1024, 1, -24.0, ); }