gotosocial/vendor/github.com/golang/geo/s2/cell.go
kim 94e87610c4
[chore] add back exif-terminator and use only for jpeg,png,webp (#3161)
* add back exif-terminator and use only for jpeg,png,webp

* fix arguments passed to terminateExif()

* pull in latest exif-terminator

* fix test

* update processed img

---------

Co-authored-by: tobi <tobi.smethurst@protonmail.com>
2024-08-02 12:46:41 +01:00

698 lines
24 KiB
Go

// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s2
import (
"io"
"math"
"github.com/golang/geo/r1"
"github.com/golang/geo/r2"
"github.com/golang/geo/r3"
"github.com/golang/geo/s1"
)
// Cell is an S2 region object that represents a cell. Unlike CellIDs,
// it supports efficient containment and intersection tests. However, it is
// also a more expensive representation.
type Cell struct {
face int8
level int8
orientation int8
id CellID
uv r2.Rect
}
// CellFromCellID constructs a Cell corresponding to the given CellID.
func CellFromCellID(id CellID) Cell {
c := Cell{}
c.id = id
f, i, j, o := c.id.faceIJOrientation()
c.face = int8(f)
c.level = int8(c.id.Level())
c.orientation = int8(o)
c.uv = ijLevelToBoundUV(i, j, int(c.level))
return c
}
// CellFromPoint constructs a cell for the given Point.
func CellFromPoint(p Point) Cell {
return CellFromCellID(cellIDFromPoint(p))
}
// CellFromLatLng constructs a cell for the given LatLng.
func CellFromLatLng(ll LatLng) Cell {
return CellFromCellID(CellIDFromLatLng(ll))
}
// Face returns the face this cell is on.
func (c Cell) Face() int {
return int(c.face)
}
// oppositeFace returns the face opposite the given face.
func oppositeFace(face int) int {
return (face + 3) % 6
}
// Level returns the level of this cell.
func (c Cell) Level() int {
return int(c.level)
}
// ID returns the CellID this cell represents.
func (c Cell) ID() CellID {
return c.id
}
// IsLeaf returns whether this Cell is a leaf or not.
func (c Cell) IsLeaf() bool {
return c.level == maxLevel
}
// SizeIJ returns the edge length of this cell in (i,j)-space.
func (c Cell) SizeIJ() int {
return sizeIJ(int(c.level))
}
// SizeST returns the edge length of this cell in (s,t)-space.
func (c Cell) SizeST() float64 {
return c.id.sizeST(int(c.level))
}
// Vertex returns the k-th vertex of the cell (k = 0,1,2,3) in CCW order
// (lower left, lower right, upper right, upper left in the UV plane).
func (c Cell) Vertex(k int) Point {
return Point{faceUVToXYZ(int(c.face), c.uv.Vertices()[k].X, c.uv.Vertices()[k].Y).Normalize()}
}
// Edge returns the inward-facing normal of the great circle passing through
// the CCW ordered edge from vertex k to vertex k+1 (mod 4) (for k = 0,1,2,3).
func (c Cell) Edge(k int) Point {
switch k {
case 0:
return Point{vNorm(int(c.face), c.uv.Y.Lo).Normalize()} // Bottom
case 1:
return Point{uNorm(int(c.face), c.uv.X.Hi).Normalize()} // Right
case 2:
return Point{vNorm(int(c.face), c.uv.Y.Hi).Mul(-1.0).Normalize()} // Top
default:
return Point{uNorm(int(c.face), c.uv.X.Lo).Mul(-1.0).Normalize()} // Left
}
}
// BoundUV returns the bounds of this cell in (u,v)-space.
func (c Cell) BoundUV() r2.Rect {
return c.uv
}
// Center returns the direction vector corresponding to the center in
// (s,t)-space of the given cell. This is the point at which the cell is
// divided into four subcells; it is not necessarily the centroid of the
// cell in (u,v)-space or (x,y,z)-space
func (c Cell) Center() Point {
return Point{c.id.rawPoint().Normalize()}
}
// Children returns the four direct children of this cell in traversal order
// and returns true. If this is a leaf cell, or the children could not be created,
// false is returned.
// The C++ method is called Subdivide.
func (c Cell) Children() ([4]Cell, bool) {
var children [4]Cell
if c.id.IsLeaf() {
return children, false
}
// Compute the cell midpoint in uv-space.
uvMid := c.id.centerUV()
// Create four children with the appropriate bounds.
cid := c.id.ChildBegin()
for pos := 0; pos < 4; pos++ {
children[pos] = Cell{
face: c.face,
level: c.level + 1,
orientation: c.orientation ^ int8(posToOrientation[pos]),
id: cid,
}
// We want to split the cell in half in u and v. To decide which
// side to set equal to the midpoint value, we look at cell's (i,j)
// position within its parent. The index for i is in bit 1 of ij.
ij := posToIJ[c.orientation][pos]
i := ij >> 1
j := ij & 1
if i == 1 {
children[pos].uv.X.Hi = c.uv.X.Hi
children[pos].uv.X.Lo = uvMid.X
} else {
children[pos].uv.X.Lo = c.uv.X.Lo
children[pos].uv.X.Hi = uvMid.X
}
if j == 1 {
children[pos].uv.Y.Hi = c.uv.Y.Hi
children[pos].uv.Y.Lo = uvMid.Y
} else {
children[pos].uv.Y.Lo = c.uv.Y.Lo
children[pos].uv.Y.Hi = uvMid.Y
}
cid = cid.Next()
}
return children, true
}
// ExactArea returns the area of this cell as accurately as possible.
func (c Cell) ExactArea() float64 {
v0, v1, v2, v3 := c.Vertex(0), c.Vertex(1), c.Vertex(2), c.Vertex(3)
return PointArea(v0, v1, v2) + PointArea(v0, v2, v3)
}
// ApproxArea returns the approximate area of this cell. This method is accurate
// to within 3% percent for all cell sizes and accurate to within 0.1% for cells
// at level 5 or higher (i.e. squares 350km to a side or smaller on the Earth's
// surface). It is moderately cheap to compute.
func (c Cell) ApproxArea() float64 {
// All cells at the first two levels have the same area.
if c.level < 2 {
return c.AverageArea()
}
// First, compute the approximate area of the cell when projected
// perpendicular to its normal. The cross product of its diagonals gives
// the normal, and the length of the normal is twice the projected area.
flatArea := 0.5 * (c.Vertex(2).Sub(c.Vertex(0).Vector).
Cross(c.Vertex(3).Sub(c.Vertex(1).Vector)).Norm())
// Now, compensate for the curvature of the cell surface by pretending
// that the cell is shaped like a spherical cap. The ratio of the
// area of a spherical cap to the area of its projected disc turns out
// to be 2 / (1 + sqrt(1 - r*r)) where r is the radius of the disc.
// For example, when r=0 the ratio is 1, and when r=1 the ratio is 2.
// Here we set Pi*r*r == flatArea to find the equivalent disc.
return flatArea * 2 / (1 + math.Sqrt(1-math.Min(1/math.Pi*flatArea, 1)))
}
// AverageArea returns the average area of cells at the level of this cell.
// This is accurate to within a factor of 1.7.
func (c Cell) AverageArea() float64 {
return AvgAreaMetric.Value(int(c.level))
}
// IntersectsCell reports whether the intersection of this cell and the other cell is not nil.
func (c Cell) IntersectsCell(oc Cell) bool {
return c.id.Intersects(oc.id)
}
// ContainsCell reports whether this cell contains the other cell.
func (c Cell) ContainsCell(oc Cell) bool {
return c.id.Contains(oc.id)
}
// CellUnionBound computes a covering of the Cell.
func (c Cell) CellUnionBound() []CellID {
return c.CapBound().CellUnionBound()
}
// latitude returns the latitude of the cell vertex in radians given by (i,j),
// where i and j indicate the Hi (1) or Lo (0) corner.
func (c Cell) latitude(i, j int) float64 {
var u, v float64
switch {
case i == 0 && j == 0:
u = c.uv.X.Lo
v = c.uv.Y.Lo
case i == 0 && j == 1:
u = c.uv.X.Lo
v = c.uv.Y.Hi
case i == 1 && j == 0:
u = c.uv.X.Hi
v = c.uv.Y.Lo
case i == 1 && j == 1:
u = c.uv.X.Hi
v = c.uv.Y.Hi
default:
panic("i and/or j is out of bounds")
}
return latitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians()
}
// longitude returns the longitude of the cell vertex in radians given by (i,j),
// where i and j indicate the Hi (1) or Lo (0) corner.
func (c Cell) longitude(i, j int) float64 {
var u, v float64
switch {
case i == 0 && j == 0:
u = c.uv.X.Lo
v = c.uv.Y.Lo
case i == 0 && j == 1:
u = c.uv.X.Lo
v = c.uv.Y.Hi
case i == 1 && j == 0:
u = c.uv.X.Hi
v = c.uv.Y.Lo
case i == 1 && j == 1:
u = c.uv.X.Hi
v = c.uv.Y.Hi
default:
panic("i and/or j is out of bounds")
}
return longitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians()
}
var (
poleMinLat = math.Asin(math.Sqrt(1.0/3)) - 0.5*dblEpsilon
)
// RectBound returns the bounding rectangle of this cell.
func (c Cell) RectBound() Rect {
if c.level > 0 {
// Except for cells at level 0, the latitude and longitude extremes are
// attained at the vertices. Furthermore, the latitude range is
// determined by one pair of diagonally opposite vertices and the
// longitude range is determined by the other pair.
//
// We first determine which corner (i,j) of the cell has the largest
// absolute latitude. To maximize latitude, we want to find the point in
// the cell that has the largest absolute z-coordinate and the smallest
// absolute x- and y-coordinates. To do this we look at each coordinate
// (u and v), and determine whether we want to minimize or maximize that
// coordinate based on the axis direction and the cell's (u,v) quadrant.
u := c.uv.X.Lo + c.uv.X.Hi
v := c.uv.Y.Lo + c.uv.Y.Hi
var i, j int
if uAxis(int(c.face)).Z == 0 {
if u < 0 {
i = 1
}
} else if u > 0 {
i = 1
}
if vAxis(int(c.face)).Z == 0 {
if v < 0 {
j = 1
}
} else if v > 0 {
j = 1
}
lat := r1.IntervalFromPoint(c.latitude(i, j)).AddPoint(c.latitude(1-i, 1-j))
lng := s1.EmptyInterval().AddPoint(c.longitude(i, 1-j)).AddPoint(c.longitude(1-i, j))
// We grow the bounds slightly to make sure that the bounding rectangle
// contains LatLngFromPoint(P) for any point P inside the loop L defined by the
// four *normalized* vertices. Note that normalization of a vector can
// change its direction by up to 0.5 * dblEpsilon radians, and it is not
// enough just to add Normalize calls to the code above because the
// latitude/longitude ranges are not necessarily determined by diagonally
// opposite vertex pairs after normalization.
//
// We would like to bound the amount by which the latitude/longitude of a
// contained point P can exceed the bounds computed above. In the case of
// longitude, the normalization error can change the direction of rounding
// leading to a maximum difference in longitude of 2 * dblEpsilon. In
// the case of latitude, the normalization error can shift the latitude by
// up to 0.5 * dblEpsilon and the other sources of error can cause the
// two latitudes to differ by up to another 1.5 * dblEpsilon, which also
// leads to a maximum difference of 2 * dblEpsilon.
return Rect{lat, lng}.expanded(LatLng{s1.Angle(2 * dblEpsilon), s1.Angle(2 * dblEpsilon)}).PolarClosure()
}
// The 4 cells around the equator extend to +/-45 degrees latitude at the
// midpoints of their top and bottom edges. The two cells covering the
// poles extend down to +/-35.26 degrees at their vertices. The maximum
// error in this calculation is 0.5 * dblEpsilon.
var bound Rect
switch c.face {
case 0:
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-math.Pi / 4, math.Pi / 4}}
case 1:
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{math.Pi / 4, 3 * math.Pi / 4}}
case 2:
bound = Rect{r1.Interval{poleMinLat, math.Pi / 2}, s1.FullInterval()}
case 3:
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{3 * math.Pi / 4, -3 * math.Pi / 4}}
case 4:
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-3 * math.Pi / 4, -math.Pi / 4}}
default:
bound = Rect{r1.Interval{-math.Pi / 2, -poleMinLat}, s1.FullInterval()}
}
// Finally, we expand the bound to account for the error when a point P is
// converted to an LatLng to test for containment. (The bound should be
// large enough so that it contains the computed LatLng of any contained
// point, not just the infinite-precision version.) We don't need to expand
// longitude because longitude is calculated via a single call to math.Atan2,
// which is guaranteed to be semi-monotonic.
return bound.expanded(LatLng{s1.Angle(dblEpsilon), s1.Angle(0)})
}
// CapBound returns the bounding cap of this cell.
func (c Cell) CapBound() Cap {
// We use the cell center in (u,v)-space as the cap axis. This vector is very close
// to GetCenter() and faster to compute. Neither one of these vectors yields the
// bounding cap with minimal surface area, but they are both pretty close.
cap := CapFromPoint(Point{faceUVToXYZ(int(c.face), c.uv.Center().X, c.uv.Center().Y).Normalize()})
for k := 0; k < 4; k++ {
cap = cap.AddPoint(c.Vertex(k))
}
return cap
}
// ContainsPoint reports whether this cell contains the given point. Note that
// unlike Loop/Polygon, a Cell is considered to be a closed set. This means
// that a point on a Cell's edge or vertex belong to the Cell and the relevant
// adjacent Cells too.
//
// If you want every point to be contained by exactly one Cell,
// you will need to convert the Cell to a Loop.
func (c Cell) ContainsPoint(p Point) bool {
var uv r2.Point
var ok bool
if uv.X, uv.Y, ok = faceXYZToUV(int(c.face), p); !ok {
return false
}
// Expand the (u,v) bound to ensure that
//
// CellFromPoint(p).ContainsPoint(p)
//
// is always true. To do this, we need to account for the error when
// converting from (u,v) coordinates to (s,t) coordinates. In the
// normal case the total error is at most dblEpsilon.
return c.uv.ExpandedByMargin(dblEpsilon).ContainsPoint(uv)
}
// Encode encodes the Cell.
func (c Cell) Encode(w io.Writer) error {
e := &encoder{w: w}
c.encode(e)
return e.err
}
func (c Cell) encode(e *encoder) {
c.id.encode(e)
}
// Decode decodes the Cell.
func (c *Cell) Decode(r io.Reader) error {
d := &decoder{r: asByteReader(r)}
c.decode(d)
return d.err
}
func (c *Cell) decode(d *decoder) {
c.id.decode(d)
*c = CellFromCellID(c.id)
}
// vertexChordDist2 returns the squared chord distance from point P to the
// given corner vertex specified by the Hi or Lo values of each.
func (c Cell) vertexChordDist2(p Point, xHi, yHi bool) s1.ChordAngle {
x := c.uv.X.Lo
y := c.uv.Y.Lo
if xHi {
x = c.uv.X.Hi
}
if yHi {
y = c.uv.Y.Hi
}
return ChordAngleBetweenPoints(p, PointFromCoords(x, y, 1))
}
// uEdgeIsClosest reports whether a point P is closer to the interior of the specified
// Cell edge (either the lower or upper edge of the Cell) or to the endpoints.
func (c Cell) uEdgeIsClosest(p Point, vHi bool) bool {
u0 := c.uv.X.Lo
u1 := c.uv.X.Hi
v := c.uv.Y.Lo
if vHi {
v = c.uv.Y.Hi
}
// These are the normals to the planes that are perpendicular to the edge
// and pass through one of its two endpoints.
dir0 := r3.Vector{v*v + 1, -u0 * v, -u0}
dir1 := r3.Vector{v*v + 1, -u1 * v, -u1}
return p.Dot(dir0) > 0 && p.Dot(dir1) < 0
}
// vEdgeIsClosest reports whether a point P is closer to the interior of the specified
// Cell edge (either the right or left edge of the Cell) or to the endpoints.
func (c Cell) vEdgeIsClosest(p Point, uHi bool) bool {
v0 := c.uv.Y.Lo
v1 := c.uv.Y.Hi
u := c.uv.X.Lo
if uHi {
u = c.uv.X.Hi
}
dir0 := r3.Vector{-u * v0, u*u + 1, -v0}
dir1 := r3.Vector{-u * v1, u*u + 1, -v1}
return p.Dot(dir0) > 0 && p.Dot(dir1) < 0
}
// edgeDistance reports the distance from a Point P to a given Cell edge. The point
// P is given by its dot product, and the uv edge by its normal in the
// given coordinate value.
func edgeDistance(ij, uv float64) s1.ChordAngle {
// Let P by the target point and let R be the closest point on the given
// edge AB. The desired distance PR can be expressed as PR^2 = PQ^2 + QR^2
// where Q is the point P projected onto the plane through the great circle
// through AB. We can compute the distance PQ^2 perpendicular to the plane
// from "dirIJ" (the dot product of the target point P with the edge
// normal) and the squared length the edge normal (1 + uv**2).
pq2 := (ij * ij) / (1 + uv*uv)
// We can compute the distance QR as (1 - OQ) where O is the sphere origin,
// and we can compute OQ^2 = 1 - PQ^2 using the Pythagorean theorem.
// (This calculation loses accuracy as angle POQ approaches Pi/2.)
qr := 1 - math.Sqrt(1-pq2)
return s1.ChordAngleFromSquaredLength(pq2 + qr*qr)
}
// distanceInternal reports the distance from the given point to the interior of
// the cell if toInterior is true or to the boundary of the cell otherwise.
func (c Cell) distanceInternal(targetXYZ Point, toInterior bool) s1.ChordAngle {
// All calculations are done in the (u,v,w) coordinates of this cell's face.
target := faceXYZtoUVW(int(c.face), targetXYZ)
// Compute dot products with all four upward or rightward-facing edge
// normals. dirIJ is the dot product for the edge corresponding to axis
// I, endpoint J. For example, dir01 is the right edge of the Cell
// (corresponding to the upper endpoint of the u-axis).
dir00 := target.X - target.Z*c.uv.X.Lo
dir01 := target.X - target.Z*c.uv.X.Hi
dir10 := target.Y - target.Z*c.uv.Y.Lo
dir11 := target.Y - target.Z*c.uv.Y.Hi
inside := true
if dir00 < 0 {
inside = false // Target is to the left of the cell
if c.vEdgeIsClosest(target, false) {
return edgeDistance(-dir00, c.uv.X.Lo)
}
}
if dir01 > 0 {
inside = false // Target is to the right of the cell
if c.vEdgeIsClosest(target, true) {
return edgeDistance(dir01, c.uv.X.Hi)
}
}
if dir10 < 0 {
inside = false // Target is below the cell
if c.uEdgeIsClosest(target, false) {
return edgeDistance(-dir10, c.uv.Y.Lo)
}
}
if dir11 > 0 {
inside = false // Target is above the cell
if c.uEdgeIsClosest(target, true) {
return edgeDistance(dir11, c.uv.Y.Hi)
}
}
if inside {
if toInterior {
return s1.ChordAngle(0)
}
// Although you might think of Cells as rectangles, they are actually
// arbitrary quadrilaterals after they are projected onto the sphere.
// Therefore the simplest approach is just to find the minimum distance to
// any of the four edges.
return minChordAngle(edgeDistance(-dir00, c.uv.X.Lo),
edgeDistance(dir01, c.uv.X.Hi),
edgeDistance(-dir10, c.uv.Y.Lo),
edgeDistance(dir11, c.uv.Y.Hi))
}
// Otherwise, the closest point is one of the four cell vertices. Note that
// it is *not* trivial to narrow down the candidates based on the edge sign
// tests above, because (1) the edges don't meet at right angles and (2)
// there are points on the far side of the sphere that are both above *and*
// below the cell, etc.
return minChordAngle(c.vertexChordDist2(target, false, false),
c.vertexChordDist2(target, true, false),
c.vertexChordDist2(target, false, true),
c.vertexChordDist2(target, true, true))
}
// Distance reports the distance from the cell to the given point. Returns zero if
// the point is inside the cell.
func (c Cell) Distance(target Point) s1.ChordAngle {
return c.distanceInternal(target, true)
}
// MaxDistance reports the maximum distance from the cell (including its interior) to the
// given point.
func (c Cell) MaxDistance(target Point) s1.ChordAngle {
// First check the 4 cell vertices. If all are within the hemisphere
// centered around target, the max distance will be to one of these vertices.
targetUVW := faceXYZtoUVW(int(c.face), target)
maxDist := maxChordAngle(c.vertexChordDist2(targetUVW, false, false),
c.vertexChordDist2(targetUVW, true, false),
c.vertexChordDist2(targetUVW, false, true),
c.vertexChordDist2(targetUVW, true, true))
if maxDist <= s1.RightChordAngle {
return maxDist
}
// Otherwise, find the minimum distance dMin to the antipodal point and the
// maximum distance will be pi - dMin.
return s1.StraightChordAngle - c.BoundaryDistance(Point{target.Mul(-1)})
}
// BoundaryDistance reports the distance from the cell boundary to the given point.
func (c Cell) BoundaryDistance(target Point) s1.ChordAngle {
return c.distanceInternal(target, false)
}
// DistanceToEdge returns the minimum distance from the cell to the given edge AB. Returns
// zero if the edge intersects the cell interior.
func (c Cell) DistanceToEdge(a, b Point) s1.ChordAngle {
// Possible optimizations:
// - Currently the (cell vertex, edge endpoint) distances are computed
// twice each, and the length of AB is computed 4 times.
// - To fix this, refactor GetDistance(target) so that it skips calculating
// the distance to each cell vertex. Instead, compute the cell vertices
// and distances in this function, and add a low-level UpdateMinDistance
// that allows the XA, XB, and AB distances to be passed in.
// - It might also be more efficient to do all calculations in UVW-space,
// since this would involve transforming 2 points rather than 4.
// First, check the minimum distance to the edge endpoints A and B.
// (This also detects whether either endpoint is inside the cell.)
minDist := minChordAngle(c.Distance(a), c.Distance(b))
if minDist == 0 {
return minDist
}
// Otherwise, check whether the edge crosses the cell boundary.
crosser := NewChainEdgeCrosser(a, b, c.Vertex(3))
for i := 0; i < 4; i++ {
if crosser.ChainCrossingSign(c.Vertex(i)) != DoNotCross {
return 0
}
}
// Finally, check whether the minimum distance occurs between a cell vertex
// and the interior of the edge AB. (Some of this work is redundant, since
// it also checks the distance to the endpoints A and B again.)
//
// Note that we don't need to check the distance from the interior of AB to
// the interior of a cell edge, because the only way that this distance can
// be minimal is if the two edges cross (already checked above).
for i := 0; i < 4; i++ {
minDist, _ = UpdateMinDistance(c.Vertex(i), a, b, minDist)
}
return minDist
}
// MaxDistanceToEdge returns the maximum distance from the cell (including its interior)
// to the given edge AB.
func (c Cell) MaxDistanceToEdge(a, b Point) s1.ChordAngle {
// If the maximum distance from both endpoints to the cell is less than π/2
// then the maximum distance from the edge to the cell is the maximum of the
// two endpoint distances.
maxDist := maxChordAngle(c.MaxDistance(a), c.MaxDistance(b))
if maxDist <= s1.RightChordAngle {
return maxDist
}
return s1.StraightChordAngle - c.DistanceToEdge(Point{a.Mul(-1)}, Point{b.Mul(-1)})
}
// DistanceToCell returns the minimum distance from this cell to the given cell.
// It returns zero if one cell contains the other.
func (c Cell) DistanceToCell(target Cell) s1.ChordAngle {
// If the cells intersect, the distance is zero. We use the (u,v) ranges
// rather than CellID intersects so that cells that share a partial edge or
// corner are considered to intersect.
if c.face == target.face && c.uv.Intersects(target.uv) {
return 0
}
// Otherwise, the minimum distance always occurs between a vertex of one
// cell and an edge of the other cell (including the edge endpoints). This
// represents a total of 32 possible (vertex, edge) pairs.
//
// TODO(roberts): This could be optimized to be at least 5x faster by pruning
// the set of possible closest vertex/edge pairs using the faces and (u,v)
// ranges of both cells.
var va, vb [4]Point
for i := 0; i < 4; i++ {
va[i] = c.Vertex(i)
vb[i] = target.Vertex(i)
}
minDist := s1.InfChordAngle()
for i := 0; i < 4; i++ {
for j := 0; j < 4; j++ {
minDist, _ = UpdateMinDistance(va[i], vb[j], vb[(j+1)&3], minDist)
minDist, _ = UpdateMinDistance(vb[i], va[j], va[(j+1)&3], minDist)
}
}
return minDist
}
// MaxDistanceToCell returns the maximum distance from the cell (including its
// interior) to the given target cell.
func (c Cell) MaxDistanceToCell(target Cell) s1.ChordAngle {
// Need to check the antipodal target for intersection with the cell. If it
// intersects, the distance is the straight ChordAngle.
// antipodalUV is the transpose of the original UV, interpreted within the opposite face.
antipodalUV := r2.Rect{target.uv.Y, target.uv.X}
if int(c.face) == oppositeFace(int(target.face)) && c.uv.Intersects(antipodalUV) {
return s1.StraightChordAngle
}
// Otherwise, the maximum distance always occurs between a vertex of one
// cell and an edge of the other cell (including the edge endpoints). This
// represents a total of 32 possible (vertex, edge) pairs.
//
// TODO(roberts): When the maximum distance is at most π/2, the maximum is
// always attained between a pair of vertices, and this could be made much
// faster by testing each vertex pair once rather than the current 4 times.
var va, vb [4]Point
for i := 0; i < 4; i++ {
va[i] = c.Vertex(i)
vb[i] = target.Vertex(i)
}
maxDist := s1.NegativeChordAngle
for i := 0; i < 4; i++ {
for j := 0; j < 4; j++ {
maxDist, _ = UpdateMaxDistance(va[i], vb[j], vb[(j+1)&3], maxDist)
maxDist, _ = UpdateMaxDistance(vb[i], va[j], va[(j+1)&3], maxDist)
}
}
return maxDist
}