// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "fmt" "github.com/golang/geo/r3" ) // matrix3x3 represents a traditional 3x3 matrix of floating point values. // This is not a full fledged matrix. It only contains the pieces needed // to satisfy the computations done within the s2 package. type matrix3x3 [3][3]float64 // col returns the given column as a Point. func (m *matrix3x3) col(col int) Point { return Point{r3.Vector{m[0][col], m[1][col], m[2][col]}} } // row returns the given row as a Point. func (m *matrix3x3) row(row int) Point { return Point{r3.Vector{m[row][0], m[row][1], m[row][2]}} } // setCol sets the specified column to the value in the given Point. func (m *matrix3x3) setCol(col int, p Point) *matrix3x3 { m[0][col] = p.X m[1][col] = p.Y m[2][col] = p.Z return m } // setRow sets the specified row to the value in the given Point. func (m *matrix3x3) setRow(row int, p Point) *matrix3x3 { m[row][0] = p.X m[row][1] = p.Y m[row][2] = p.Z return m } // scale multiplies the matrix by the given value. func (m *matrix3x3) scale(f float64) *matrix3x3 { return &matrix3x3{ [3]float64{f * m[0][0], f * m[0][1], f * m[0][2]}, [3]float64{f * m[1][0], f * m[1][1], f * m[1][2]}, [3]float64{f * m[2][0], f * m[2][1], f * m[2][2]}, } } // mul returns the multiplication of m by the Point p and converts the // resulting 1x3 matrix into a Point. func (m *matrix3x3) mul(p Point) Point { return Point{r3.Vector{ m[0][0]*p.X + m[0][1]*p.Y + m[0][2]*p.Z, m[1][0]*p.X + m[1][1]*p.Y + m[1][2]*p.Z, m[2][0]*p.X + m[2][1]*p.Y + m[2][2]*p.Z, }} } // det returns the determinant of this matrix. func (m *matrix3x3) det() float64 { // | a b c | // det | d e f | = aei + bfg + cdh - ceg - bdi - afh // | g h i | return m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1] - m[0][2]*m[1][1]*m[2][0] - m[0][1]*m[1][0]*m[2][2] - m[0][0]*m[1][2]*m[2][1] } // transpose reflects the matrix along its diagonal and returns the result. func (m *matrix3x3) transpose() *matrix3x3 { m[0][1], m[1][0] = m[1][0], m[0][1] m[0][2], m[2][0] = m[2][0], m[0][2] m[1][2], m[2][1] = m[2][1], m[1][2] return m } // String formats the matrix into an easier to read layout. func (m *matrix3x3) String() string { return fmt.Sprintf("[ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ] [ %0.4f %0.4f %0.4f ]", m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], ) } // getFrame returns the orthonormal frame for the given point on the unit sphere. func getFrame(p Point) matrix3x3 { // Given the point p on the unit sphere, extend this into a right-handed // coordinate frame of unit-length column vectors m = (x,y,z). Note that // the vectors (x,y) are an orthonormal frame for the tangent space at point p, // while p itself is an orthonormal frame for the normal space at p. m := matrix3x3{} m.setCol(2, p) m.setCol(1, Point{p.Ortho()}) m.setCol(0, Point{m.col(1).Cross(p.Vector)}) return m } // toFrame returns the coordinates of the given point with respect to its orthonormal basis m. // The resulting point q satisfies the identity (m * q == p). func toFrame(m matrix3x3, p Point) Point { // The inverse of an orthonormal matrix is its transpose. return m.transpose().mul(p) } // fromFrame returns the coordinates of the given point in standard axis-aligned basis // from its orthonormal basis m. // The resulting point p satisfies the identity (p == m * q). func fromFrame(m matrix3x3, q Point) Point { return m.mul(q) }