package pgconn import ( "context" "crypto/md5" "crypto/tls" "encoding/binary" "encoding/hex" "errors" "fmt" "io" "math" "net" "strconv" "strings" "sync" "time" "github.com/jackc/pgx/v5/internal/iobufpool" "github.com/jackc/pgx/v5/internal/pgio" "github.com/jackc/pgx/v5/pgconn/internal/bgreader" "github.com/jackc/pgx/v5/pgconn/internal/ctxwatch" "github.com/jackc/pgx/v5/pgproto3" ) const ( connStatusUninitialized = iota connStatusConnecting connStatusClosed connStatusIdle connStatusBusy ) // Notice represents a notice response message reported by the PostgreSQL server. Be aware that this is distinct from // LISTEN/NOTIFY notification. type Notice PgError // Notification is a message received from the PostgreSQL LISTEN/NOTIFY system type Notification struct { PID uint32 // backend pid that sent the notification Channel string // channel from which notification was received Payload string } // DialFunc is a function that can be used to connect to a PostgreSQL server. type DialFunc func(ctx context.Context, network, addr string) (net.Conn, error) // LookupFunc is a function that can be used to lookup IPs addrs from host. Optionally an ip:port combination can be // returned in order to override the connection string's port. type LookupFunc func(ctx context.Context, host string) (addrs []string, err error) // BuildFrontendFunc is a function that can be used to create Frontend implementation for connection. type BuildFrontendFunc func(r io.Reader, w io.Writer) *pgproto3.Frontend // PgErrorHandler is a function that handles errors returned from Postgres. This function must return true to keep // the connection open. Returning false will cause the connection to be closed immediately. You should return // false on any FATAL-severity errors. This will not receive network errors. The *PgConn is provided so the handler is // aware of the origin of the error, but it must not invoke any query method. type PgErrorHandler func(*PgConn, *PgError) bool // NoticeHandler is a function that can handle notices received from the PostgreSQL server. Notices can be received at // any time, usually during handling of a query response. The *PgConn is provided so the handler is aware of the origin // of the notice, but it must not invoke any query method. Be aware that this is distinct from LISTEN/NOTIFY // notification. type NoticeHandler func(*PgConn, *Notice) // NotificationHandler is a function that can handle notifications received from the PostgreSQL server. Notifications // can be received at any time, usually during handling of a query response. The *PgConn is provided so the handler is // aware of the origin of the notice, but it must not invoke any query method. Be aware that this is distinct from a // notice event. type NotificationHandler func(*PgConn, *Notification) // PgConn is a low-level PostgreSQL connection handle. It is not safe for concurrent usage. type PgConn struct { conn net.Conn pid uint32 // backend pid secretKey uint32 // key to use to send a cancel query message to the server parameterStatuses map[string]string // parameters that have been reported by the server txStatus byte frontend *pgproto3.Frontend bgReader *bgreader.BGReader slowWriteTimer *time.Timer bgReaderStarted chan struct{} config *Config status byte // One of connStatus* constants bufferingReceive bool bufferingReceiveMux sync.Mutex bufferingReceiveMsg pgproto3.BackendMessage bufferingReceiveErr error peekedMsg pgproto3.BackendMessage // Reusable / preallocated resources resultReader ResultReader multiResultReader MultiResultReader pipeline Pipeline contextWatcher *ctxwatch.ContextWatcher fieldDescriptions [16]FieldDescription cleanupDone chan struct{} } // Connect establishes a connection to a PostgreSQL server using the environment and connString (in URL or DSN format) // to provide configuration. See documentation for [ParseConfig] for details. ctx can be used to cancel a connect attempt. func Connect(ctx context.Context, connString string) (*PgConn, error) { config, err := ParseConfig(connString) if err != nil { return nil, err } return ConnectConfig(ctx, config) } // Connect establishes a connection to a PostgreSQL server using the environment and connString (in URL or DSN format) // and ParseConfigOptions to provide additional configuration. See documentation for [ParseConfig] for details. ctx can be // used to cancel a connect attempt. func ConnectWithOptions(ctx context.Context, connString string, parseConfigOptions ParseConfigOptions) (*PgConn, error) { config, err := ParseConfigWithOptions(connString, parseConfigOptions) if err != nil { return nil, err } return ConnectConfig(ctx, config) } // Connect establishes a connection to a PostgreSQL server using config. config must have been constructed with // [ParseConfig]. ctx can be used to cancel a connect attempt. // // If config.Fallbacks are present they will sequentially be tried in case of error establishing network connection. An // authentication error will terminate the chain of attempts (like libpq: // https://www.postgresql.org/docs/11/libpq-connect.html#LIBPQ-MULTIPLE-HOSTS) and be returned as the error. Otherwise, // if all attempts fail the last error is returned. func ConnectConfig(octx context.Context, config *Config) (pgConn *PgConn, err error) { // Default values are set in ParseConfig. Enforce initial creation by ParseConfig rather than setting defaults from // zero values. if !config.createdByParseConfig { panic("config must be created by ParseConfig") } // Simplify usage by treating primary config and fallbacks the same. fallbackConfigs := []*FallbackConfig{ { Host: config.Host, Port: config.Port, TLSConfig: config.TLSConfig, }, } fallbackConfigs = append(fallbackConfigs, config.Fallbacks...) ctx := octx fallbackConfigs, err = expandWithIPs(ctx, config.LookupFunc, fallbackConfigs) if err != nil { return nil, &ConnectError{Config: config, msg: "hostname resolving error", err: err} } if len(fallbackConfigs) == 0 { return nil, &ConnectError{Config: config, msg: "hostname resolving error", err: errors.New("ip addr wasn't found")} } foundBestServer := false var fallbackConfig *FallbackConfig for i, fc := range fallbackConfigs { // ConnectTimeout restricts the whole connection process. if config.ConnectTimeout != 0 { // create new context first time or when previous host was different if i == 0 || (fallbackConfigs[i].Host != fallbackConfigs[i-1].Host) { var cancel context.CancelFunc ctx, cancel = context.WithTimeout(octx, config.ConnectTimeout) defer cancel() } } else { ctx = octx } pgConn, err = connect(ctx, config, fc, false) if err == nil { foundBestServer = true break } else if pgerr, ok := err.(*PgError); ok { err = &ConnectError{Config: config, msg: "server error", err: pgerr} const ERRCODE_INVALID_PASSWORD = "28P01" // wrong password const ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION = "28000" // wrong password or bad pg_hba.conf settings const ERRCODE_INVALID_CATALOG_NAME = "3D000" // db does not exist const ERRCODE_INSUFFICIENT_PRIVILEGE = "42501" // missing connect privilege if pgerr.Code == ERRCODE_INVALID_PASSWORD || pgerr.Code == ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION && fc.TLSConfig != nil || pgerr.Code == ERRCODE_INVALID_CATALOG_NAME || pgerr.Code == ERRCODE_INSUFFICIENT_PRIVILEGE { break } } else if cerr, ok := err.(*ConnectError); ok { if _, ok := cerr.err.(*NotPreferredError); ok { fallbackConfig = fc } } } if !foundBestServer && fallbackConfig != nil { pgConn, err = connect(ctx, config, fallbackConfig, true) if pgerr, ok := err.(*PgError); ok { err = &ConnectError{Config: config, msg: "server error", err: pgerr} } } if err != nil { return nil, err // no need to wrap in connectError because it will already be wrapped in all cases except PgError } if config.AfterConnect != nil { err := config.AfterConnect(ctx, pgConn) if err != nil { pgConn.conn.Close() return nil, &ConnectError{Config: config, msg: "AfterConnect error", err: err} } } return pgConn, nil } func expandWithIPs(ctx context.Context, lookupFn LookupFunc, fallbacks []*FallbackConfig) ([]*FallbackConfig, error) { var configs []*FallbackConfig var lookupErrors []error for _, fb := range fallbacks { // skip resolve for unix sockets if isAbsolutePath(fb.Host) { configs = append(configs, &FallbackConfig{ Host: fb.Host, Port: fb.Port, TLSConfig: fb.TLSConfig, }) continue } ips, err := lookupFn(ctx, fb.Host) if err != nil { lookupErrors = append(lookupErrors, err) continue } for _, ip := range ips { splitIP, splitPort, err := net.SplitHostPort(ip) if err == nil { port, err := strconv.ParseUint(splitPort, 10, 16) if err != nil { return nil, fmt.Errorf("error parsing port (%s) from lookup: %w", splitPort, err) } configs = append(configs, &FallbackConfig{ Host: splitIP, Port: uint16(port), TLSConfig: fb.TLSConfig, }) } else { configs = append(configs, &FallbackConfig{ Host: ip, Port: fb.Port, TLSConfig: fb.TLSConfig, }) } } } // See https://github.com/jackc/pgx/issues/1464. When Go 1.20 can be used in pgx consider using errors.Join so all // errors are reported. if len(configs) == 0 && len(lookupErrors) > 0 { return nil, lookupErrors[0] } return configs, nil } func connect(ctx context.Context, config *Config, fallbackConfig *FallbackConfig, ignoreNotPreferredErr bool, ) (*PgConn, error) { pgConn := new(PgConn) pgConn.config = config pgConn.cleanupDone = make(chan struct{}) var err error network, address := NetworkAddress(fallbackConfig.Host, fallbackConfig.Port) netConn, err := config.DialFunc(ctx, network, address) if err != nil { return nil, &ConnectError{Config: config, msg: "dial error", err: normalizeTimeoutError(ctx, err)} } pgConn.conn = netConn pgConn.contextWatcher = newContextWatcher(netConn) pgConn.contextWatcher.Watch(ctx) if fallbackConfig.TLSConfig != nil { nbTLSConn, err := startTLS(netConn, fallbackConfig.TLSConfig) pgConn.contextWatcher.Unwatch() // Always unwatch `netConn` after TLS. if err != nil { netConn.Close() return nil, &ConnectError{Config: config, msg: "tls error", err: normalizeTimeoutError(ctx, err)} } pgConn.conn = nbTLSConn pgConn.contextWatcher = newContextWatcher(nbTLSConn) pgConn.contextWatcher.Watch(ctx) } defer pgConn.contextWatcher.Unwatch() pgConn.parameterStatuses = make(map[string]string) pgConn.status = connStatusConnecting pgConn.bgReader = bgreader.New(pgConn.conn) pgConn.slowWriteTimer = time.AfterFunc(time.Duration(math.MaxInt64), func() { pgConn.bgReader.Start() pgConn.bgReaderStarted <- struct{}{} }, ) pgConn.slowWriteTimer.Stop() pgConn.bgReaderStarted = make(chan struct{}) pgConn.frontend = config.BuildFrontend(pgConn.bgReader, pgConn.conn) startupMsg := pgproto3.StartupMessage{ ProtocolVersion: pgproto3.ProtocolVersionNumber, Parameters: make(map[string]string), } // Copy default run-time params for k, v := range config.RuntimeParams { startupMsg.Parameters[k] = v } startupMsg.Parameters["user"] = config.User if config.Database != "" { startupMsg.Parameters["database"] = config.Database } pgConn.frontend.Send(&startupMsg) if err := pgConn.flushWithPotentialWriteReadDeadlock(); err != nil { pgConn.conn.Close() return nil, &ConnectError{Config: config, msg: "failed to write startup message", err: normalizeTimeoutError(ctx, err)} } for { msg, err := pgConn.receiveMessage() if err != nil { pgConn.conn.Close() if err, ok := err.(*PgError); ok { return nil, err } return nil, &ConnectError{Config: config, msg: "failed to receive message", err: normalizeTimeoutError(ctx, err)} } switch msg := msg.(type) { case *pgproto3.BackendKeyData: pgConn.pid = msg.ProcessID pgConn.secretKey = msg.SecretKey case *pgproto3.AuthenticationOk: case *pgproto3.AuthenticationCleartextPassword: err = pgConn.txPasswordMessage(pgConn.config.Password) if err != nil { pgConn.conn.Close() return nil, &ConnectError{Config: config, msg: "failed to write password message", err: err} } case *pgproto3.AuthenticationMD5Password: digestedPassword := "md5" + hexMD5(hexMD5(pgConn.config.Password+pgConn.config.User)+string(msg.Salt[:])) err = pgConn.txPasswordMessage(digestedPassword) if err != nil { pgConn.conn.Close() return nil, &ConnectError{Config: config, msg: "failed to write password message", err: err} } case *pgproto3.AuthenticationSASL: err = pgConn.scramAuth(msg.AuthMechanisms) if err != nil { pgConn.conn.Close() return nil, &ConnectError{Config: config, msg: "failed SASL auth", err: err} } case *pgproto3.AuthenticationGSS: err = pgConn.gssAuth() if err != nil { pgConn.conn.Close() return nil, &ConnectError{Config: config, msg: "failed GSS auth", err: err} } case *pgproto3.ReadyForQuery: pgConn.status = connStatusIdle if config.ValidateConnect != nil { // ValidateConnect may execute commands that cause the context to be watched again. Unwatch first to avoid // the watch already in progress panic. This is that last thing done by this method so there is no need to // restart the watch after ValidateConnect returns. // // See https://github.com/jackc/pgconn/issues/40. pgConn.contextWatcher.Unwatch() err := config.ValidateConnect(ctx, pgConn) if err != nil { if _, ok := err.(*NotPreferredError); ignoreNotPreferredErr && ok { return pgConn, nil } pgConn.conn.Close() return nil, &ConnectError{Config: config, msg: "ValidateConnect failed", err: err} } } return pgConn, nil case *pgproto3.ParameterStatus, *pgproto3.NoticeResponse: // handled by ReceiveMessage case *pgproto3.ErrorResponse: pgConn.conn.Close() return nil, ErrorResponseToPgError(msg) default: pgConn.conn.Close() return nil, &ConnectError{Config: config, msg: "received unexpected message", err: err} } } } func newContextWatcher(conn net.Conn) *ctxwatch.ContextWatcher { return ctxwatch.NewContextWatcher( func() { conn.SetDeadline(time.Date(1, 1, 1, 1, 1, 1, 1, time.UTC)) }, func() { conn.SetDeadline(time.Time{}) }, ) } func startTLS(conn net.Conn, tlsConfig *tls.Config) (net.Conn, error) { err := binary.Write(conn, binary.BigEndian, []int32{8, 80877103}) if err != nil { return nil, err } response := make([]byte, 1) if _, err = io.ReadFull(conn, response); err != nil { return nil, err } if response[0] != 'S' { return nil, errors.New("server refused TLS connection") } return tls.Client(conn, tlsConfig), nil } func (pgConn *PgConn) txPasswordMessage(password string) (err error) { pgConn.frontend.Send(&pgproto3.PasswordMessage{Password: password}) return pgConn.flushWithPotentialWriteReadDeadlock() } func hexMD5(s string) string { hash := md5.New() io.WriteString(hash, s) return hex.EncodeToString(hash.Sum(nil)) } func (pgConn *PgConn) signalMessage() chan struct{} { if pgConn.bufferingReceive { panic("BUG: signalMessage when already in progress") } pgConn.bufferingReceive = true pgConn.bufferingReceiveMux.Lock() ch := make(chan struct{}) go func() { pgConn.bufferingReceiveMsg, pgConn.bufferingReceiveErr = pgConn.frontend.Receive() pgConn.bufferingReceiveMux.Unlock() close(ch) }() return ch } // ReceiveMessage receives one wire protocol message from the PostgreSQL server. It must only be used when the // connection is not busy. e.g. It is an error to call ReceiveMessage while reading the result of a query. The messages // are still handled by the core pgconn message handling system so receiving a NotificationResponse will still trigger // the OnNotification callback. // // This is a very low level method that requires deep understanding of the PostgreSQL wire protocol to use correctly. // See https://www.postgresql.org/docs/current/protocol.html. func (pgConn *PgConn) ReceiveMessage(ctx context.Context) (pgproto3.BackendMessage, error) { if err := pgConn.lock(); err != nil { return nil, err } defer pgConn.unlock() if ctx != context.Background() { select { case <-ctx.Done(): return nil, newContextAlreadyDoneError(ctx) default: } pgConn.contextWatcher.Watch(ctx) defer pgConn.contextWatcher.Unwatch() } msg, err := pgConn.receiveMessage() if err != nil { err = &pgconnError{ msg: "receive message failed", err: normalizeTimeoutError(ctx, err), safeToRetry: true, } } return msg, err } // peekMessage peeks at the next message without setting up context cancellation. func (pgConn *PgConn) peekMessage() (pgproto3.BackendMessage, error) { if pgConn.peekedMsg != nil { return pgConn.peekedMsg, nil } var msg pgproto3.BackendMessage var err error if pgConn.bufferingReceive { pgConn.bufferingReceiveMux.Lock() msg = pgConn.bufferingReceiveMsg err = pgConn.bufferingReceiveErr pgConn.bufferingReceiveMux.Unlock() pgConn.bufferingReceive = false // If a timeout error happened in the background try the read again. var netErr net.Error if errors.As(err, &netErr) && netErr.Timeout() { msg, err = pgConn.frontend.Receive() } } else { msg, err = pgConn.frontend.Receive() } if err != nil { // Close on anything other than timeout error - everything else is fatal var netErr net.Error isNetErr := errors.As(err, &netErr) if !(isNetErr && netErr.Timeout()) { pgConn.asyncClose() } return nil, err } pgConn.peekedMsg = msg return msg, nil } // receiveMessage receives a message without setting up context cancellation func (pgConn *PgConn) receiveMessage() (pgproto3.BackendMessage, error) { msg, err := pgConn.peekMessage() if err != nil { return nil, err } pgConn.peekedMsg = nil switch msg := msg.(type) { case *pgproto3.ReadyForQuery: pgConn.txStatus = msg.TxStatus case *pgproto3.ParameterStatus: pgConn.parameterStatuses[msg.Name] = msg.Value case *pgproto3.ErrorResponse: err := ErrorResponseToPgError(msg) if pgConn.config.OnPgError != nil && !pgConn.config.OnPgError(pgConn, err) { pgConn.status = connStatusClosed pgConn.conn.Close() // Ignore error as the connection is already broken and there is already an error to return. close(pgConn.cleanupDone) return nil, err } case *pgproto3.NoticeResponse: if pgConn.config.OnNotice != nil { pgConn.config.OnNotice(pgConn, noticeResponseToNotice(msg)) } case *pgproto3.NotificationResponse: if pgConn.config.OnNotification != nil { pgConn.config.OnNotification(pgConn, &Notification{PID: msg.PID, Channel: msg.Channel, Payload: msg.Payload}) } } return msg, nil } // Conn returns the underlying net.Conn. This rarely necessary. If the connection will be directly used for reading or // writing then SyncConn should usually be called before Conn. func (pgConn *PgConn) Conn() net.Conn { return pgConn.conn } // PID returns the backend PID. func (pgConn *PgConn) PID() uint32 { return pgConn.pid } // TxStatus returns the current TxStatus as reported by the server in the ReadyForQuery message. // // Possible return values: // // 'I' - idle / not in transaction // 'T' - in a transaction // 'E' - in a failed transaction // // See https://www.postgresql.org/docs/current/protocol-message-formats.html. func (pgConn *PgConn) TxStatus() byte { return pgConn.txStatus } // SecretKey returns the backend secret key used to send a cancel query message to the server. func (pgConn *PgConn) SecretKey() uint32 { return pgConn.secretKey } // Frontend returns the underlying *pgproto3.Frontend. This rarely necessary. func (pgConn *PgConn) Frontend() *pgproto3.Frontend { return pgConn.frontend } // Close closes a connection. It is safe to call Close on an already closed connection. Close attempts a clean close by // sending the exit message to PostgreSQL. However, this could block so ctx is available to limit the time to wait. The // underlying net.Conn.Close() will always be called regardless of any other errors. func (pgConn *PgConn) Close(ctx context.Context) error { if pgConn.status == connStatusClosed { return nil } pgConn.status = connStatusClosed defer close(pgConn.cleanupDone) defer pgConn.conn.Close() if ctx != context.Background() { // Close may be called while a cancellable query is in progress. This will most often be triggered by panic when // a defer closes the connection (possibly indirectly via a transaction or a connection pool). Unwatch to end any // previous watch. It is safe to Unwatch regardless of whether a watch is already is progress. // // See https://github.com/jackc/pgconn/issues/29 pgConn.contextWatcher.Unwatch() pgConn.contextWatcher.Watch(ctx) defer pgConn.contextWatcher.Unwatch() } // Ignore any errors sending Terminate message and waiting for server to close connection. // This mimics the behavior of libpq PQfinish. It calls closePGconn which calls sendTerminateConn which purposefully // ignores errors. // // See https://github.com/jackc/pgx/issues/637 pgConn.frontend.Send(&pgproto3.Terminate{}) pgConn.flushWithPotentialWriteReadDeadlock() return pgConn.conn.Close() } // asyncClose marks the connection as closed and asynchronously sends a cancel query message and closes the underlying // connection. func (pgConn *PgConn) asyncClose() { if pgConn.status == connStatusClosed { return } pgConn.status = connStatusClosed go func() { defer close(pgConn.cleanupDone) defer pgConn.conn.Close() deadline := time.Now().Add(time.Second * 15) ctx, cancel := context.WithDeadline(context.Background(), deadline) defer cancel() pgConn.CancelRequest(ctx) pgConn.conn.SetDeadline(deadline) pgConn.frontend.Send(&pgproto3.Terminate{}) pgConn.flushWithPotentialWriteReadDeadlock() }() } // CleanupDone returns a channel that will be closed after all underlying resources have been cleaned up. A closed // connection is no longer usable, but underlying resources, in particular the net.Conn, may not have finished closing // yet. This is because certain errors such as a context cancellation require that the interrupted function call return // immediately, but the error may also cause the connection to be closed. In these cases the underlying resources are // closed asynchronously. // // This is only likely to be useful to connection pools. It gives them a way avoid establishing a new connection while // an old connection is still being cleaned up and thereby exceeding the maximum pool size. func (pgConn *PgConn) CleanupDone() chan (struct{}) { return pgConn.cleanupDone } // IsClosed reports if the connection has been closed. // // CleanupDone() can be used to determine if all cleanup has been completed. func (pgConn *PgConn) IsClosed() bool { return pgConn.status < connStatusIdle } // IsBusy reports if the connection is busy. func (pgConn *PgConn) IsBusy() bool { return pgConn.status == connStatusBusy } // lock locks the connection. func (pgConn *PgConn) lock() error { switch pgConn.status { case connStatusBusy: return &connLockError{status: "conn busy"} // This only should be possible in case of an application bug. case connStatusClosed: return &connLockError{status: "conn closed"} case connStatusUninitialized: return &connLockError{status: "conn uninitialized"} } pgConn.status = connStatusBusy return nil } func (pgConn *PgConn) unlock() { switch pgConn.status { case connStatusBusy: pgConn.status = connStatusIdle case connStatusClosed: default: panic("BUG: cannot unlock unlocked connection") // This should only be possible if there is a bug in this package. } } // ParameterStatus returns the value of a parameter reported by the server (e.g. // server_version). Returns an empty string for unknown parameters. func (pgConn *PgConn) ParameterStatus(key string) string { return pgConn.parameterStatuses[key] } // CommandTag is the status text returned by PostgreSQL for a query. type CommandTag struct { s string } // NewCommandTag makes a CommandTag from s. func NewCommandTag(s string) CommandTag { return CommandTag{s: s} } // RowsAffected returns the number of rows affected. If the CommandTag was not // for a row affecting command (e.g. "CREATE TABLE") then it returns 0. func (ct CommandTag) RowsAffected() int64 { // Find last non-digit idx := -1 for i := len(ct.s) - 1; i >= 0; i-- { if ct.s[i] >= '0' && ct.s[i] <= '9' { idx = i } else { break } } if idx == -1 { return 0 } var n int64 for _, b := range ct.s[idx:] { n = n*10 + int64(b-'0') } return n } func (ct CommandTag) String() string { return ct.s } // Insert is true if the command tag starts with "INSERT". func (ct CommandTag) Insert() bool { return strings.HasPrefix(ct.s, "INSERT") } // Update is true if the command tag starts with "UPDATE". func (ct CommandTag) Update() bool { return strings.HasPrefix(ct.s, "UPDATE") } // Delete is true if the command tag starts with "DELETE". func (ct CommandTag) Delete() bool { return strings.HasPrefix(ct.s, "DELETE") } // Select is true if the command tag starts with "SELECT". func (ct CommandTag) Select() bool { return strings.HasPrefix(ct.s, "SELECT") } type FieldDescription struct { Name string TableOID uint32 TableAttributeNumber uint16 DataTypeOID uint32 DataTypeSize int16 TypeModifier int32 Format int16 } func (pgConn *PgConn) convertRowDescription(dst []FieldDescription, rd *pgproto3.RowDescription) []FieldDescription { if cap(dst) >= len(rd.Fields) { dst = dst[:len(rd.Fields):len(rd.Fields)] } else { dst = make([]FieldDescription, len(rd.Fields)) } for i := range rd.Fields { dst[i].Name = string(rd.Fields[i].Name) dst[i].TableOID = rd.Fields[i].TableOID dst[i].TableAttributeNumber = rd.Fields[i].TableAttributeNumber dst[i].DataTypeOID = rd.Fields[i].DataTypeOID dst[i].DataTypeSize = rd.Fields[i].DataTypeSize dst[i].TypeModifier = rd.Fields[i].TypeModifier dst[i].Format = rd.Fields[i].Format } return dst } type StatementDescription struct { Name string SQL string ParamOIDs []uint32 Fields []FieldDescription } // Prepare creates a prepared statement. If the name is empty, the anonymous prepared statement will be used. This // allows Prepare to also to describe statements without creating a server-side prepared statement. // // Prepare does not send a PREPARE statement to the server. It uses the PostgreSQL Parse and Describe protocol messages // directly. func (pgConn *PgConn) Prepare(ctx context.Context, name, sql string, paramOIDs []uint32) (*StatementDescription, error) { if err := pgConn.lock(); err != nil { return nil, err } defer pgConn.unlock() if ctx != context.Background() { select { case <-ctx.Done(): return nil, newContextAlreadyDoneError(ctx) default: } pgConn.contextWatcher.Watch(ctx) defer pgConn.contextWatcher.Unwatch() } pgConn.frontend.SendParse(&pgproto3.Parse{Name: name, Query: sql, ParameterOIDs: paramOIDs}) pgConn.frontend.SendDescribe(&pgproto3.Describe{ObjectType: 'S', Name: name}) pgConn.frontend.SendSync(&pgproto3.Sync{}) err := pgConn.flushWithPotentialWriteReadDeadlock() if err != nil { pgConn.asyncClose() return nil, err } psd := &StatementDescription{Name: name, SQL: sql} var parseErr error readloop: for { msg, err := pgConn.receiveMessage() if err != nil { pgConn.asyncClose() return nil, normalizeTimeoutError(ctx, err) } switch msg := msg.(type) { case *pgproto3.ParameterDescription: psd.ParamOIDs = make([]uint32, len(msg.ParameterOIDs)) copy(psd.ParamOIDs, msg.ParameterOIDs) case *pgproto3.RowDescription: psd.Fields = pgConn.convertRowDescription(nil, msg) case *pgproto3.ErrorResponse: parseErr = ErrorResponseToPgError(msg) case *pgproto3.ReadyForQuery: break readloop } } if parseErr != nil { return nil, parseErr } return psd, nil } // Deallocate deallocates a prepared statement. // // Deallocate does not send a DEALLOCATE statement to the server. It uses the PostgreSQL Close protocol message // directly. This has slightly different behavior than executing DEALLOCATE statement. // - Deallocate can succeed in an aborted transaction. // - Deallocating a non-existent prepared statement is not an error. func (pgConn *PgConn) Deallocate(ctx context.Context, name string) error { if err := pgConn.lock(); err != nil { return err } defer pgConn.unlock() if ctx != context.Background() { select { case <-ctx.Done(): return newContextAlreadyDoneError(ctx) default: } pgConn.contextWatcher.Watch(ctx) defer pgConn.contextWatcher.Unwatch() } pgConn.frontend.SendClose(&pgproto3.Close{ObjectType: 'S', Name: name}) pgConn.frontend.SendSync(&pgproto3.Sync{}) err := pgConn.flushWithPotentialWriteReadDeadlock() if err != nil { pgConn.asyncClose() return err } for { msg, err := pgConn.receiveMessage() if err != nil { pgConn.asyncClose() return normalizeTimeoutError(ctx, err) } switch msg := msg.(type) { case *pgproto3.ErrorResponse: return ErrorResponseToPgError(msg) case *pgproto3.ReadyForQuery: return nil } } } // ErrorResponseToPgError converts a wire protocol error message to a *PgError. func ErrorResponseToPgError(msg *pgproto3.ErrorResponse) *PgError { return &PgError{ Severity: msg.Severity, Code: string(msg.Code), Message: string(msg.Message), Detail: string(msg.Detail), Hint: msg.Hint, Position: msg.Position, InternalPosition: msg.InternalPosition, InternalQuery: string(msg.InternalQuery), Where: string(msg.Where), SchemaName: string(msg.SchemaName), TableName: string(msg.TableName), ColumnName: string(msg.ColumnName), DataTypeName: string(msg.DataTypeName), ConstraintName: msg.ConstraintName, File: string(msg.File), Line: msg.Line, Routine: string(msg.Routine), } } func noticeResponseToNotice(msg *pgproto3.NoticeResponse) *Notice { pgerr := ErrorResponseToPgError((*pgproto3.ErrorResponse)(msg)) return (*Notice)(pgerr) } // CancelRequest sends a cancel request to the PostgreSQL server. It returns an error if unable to deliver the cancel // request, but lack of an error does not ensure that the query was canceled. As specified in the documentation, there // is no way to be sure a query was canceled. See https://www.postgresql.org/docs/11/protocol-flow.html#id-1.10.5.7.9 func (pgConn *PgConn) CancelRequest(ctx context.Context) error { // Open a cancellation request to the same server. The address is taken from the net.Conn directly instead of reusing // the connection config. This is important in high availability configurations where fallback connections may be // specified or DNS may be used to load balance. serverAddr := pgConn.conn.RemoteAddr() var serverNetwork string var serverAddress string if serverAddr.Network() == "unix" { // for unix sockets, RemoteAddr() calls getpeername() which returns the name the // server passed to bind(). For Postgres, this is always a relative path "./.s.PGSQL.5432" // so connecting to it will fail. Fall back to the config's value serverNetwork, serverAddress = NetworkAddress(pgConn.config.Host, pgConn.config.Port) } else { serverNetwork, serverAddress = serverAddr.Network(), serverAddr.String() } cancelConn, err := pgConn.config.DialFunc(ctx, serverNetwork, serverAddress) if err != nil { // In case of unix sockets, RemoteAddr() returns only the file part of the path. If the // first connect failed, try the config. if serverAddr.Network() != "unix" { return err } serverNetwork, serverAddr := NetworkAddress(pgConn.config.Host, pgConn.config.Port) cancelConn, err = pgConn.config.DialFunc(ctx, serverNetwork, serverAddr) if err != nil { return err } } defer cancelConn.Close() if ctx != context.Background() { contextWatcher := ctxwatch.NewContextWatcher( func() { cancelConn.SetDeadline(time.Date(1, 1, 1, 1, 1, 1, 1, time.UTC)) }, func() { cancelConn.SetDeadline(time.Time{}) }, ) contextWatcher.Watch(ctx) defer contextWatcher.Unwatch() } buf := make([]byte, 16) binary.BigEndian.PutUint32(buf[0:4], 16) binary.BigEndian.PutUint32(buf[4:8], 80877102) binary.BigEndian.PutUint32(buf[8:12], pgConn.pid) binary.BigEndian.PutUint32(buf[12:16], pgConn.secretKey) if _, err := cancelConn.Write(buf); err != nil { return fmt.Errorf("write to connection for cancellation: %w", err) } // Wait for the cancel request to be acknowledged by the server. // It copies the behavior of the libpq: https://github.com/postgres/postgres/blob/REL_16_0/src/interfaces/libpq/fe-connect.c#L4946-L4960 _, _ = cancelConn.Read(buf) return nil } // WaitForNotification waits for a LISTEN/NOTIFY message to be received. It returns an error if a notification was not // received. func (pgConn *PgConn) WaitForNotification(ctx context.Context) error { if err := pgConn.lock(); err != nil { return err } defer pgConn.unlock() if ctx != context.Background() { select { case <-ctx.Done(): return newContextAlreadyDoneError(ctx) default: } pgConn.contextWatcher.Watch(ctx) defer pgConn.contextWatcher.Unwatch() } for { msg, err := pgConn.receiveMessage() if err != nil { return normalizeTimeoutError(ctx, err) } switch msg.(type) { case *pgproto3.NotificationResponse: return nil } } } // Exec executes SQL via the PostgreSQL simple query protocol. SQL may contain multiple queries. Execution is // implicitly wrapped in a transaction unless a transaction is already in progress or SQL contains transaction control // statements. // // Prefer ExecParams unless executing arbitrary SQL that may contain multiple queries. func (pgConn *PgConn) Exec(ctx context.Context, sql string) *MultiResultReader { if err := pgConn.lock(); err != nil { return &MultiResultReader{ closed: true, err: err, } } pgConn.multiResultReader = MultiResultReader{ pgConn: pgConn, ctx: ctx, } multiResult := &pgConn.multiResultReader if ctx != context.Background() { select { case <-ctx.Done(): multiResult.closed = true multiResult.err = newContextAlreadyDoneError(ctx) pgConn.unlock() return multiResult default: } pgConn.contextWatcher.Watch(ctx) } pgConn.frontend.SendQuery(&pgproto3.Query{String: sql}) err := pgConn.flushWithPotentialWriteReadDeadlock() if err != nil { pgConn.asyncClose() pgConn.contextWatcher.Unwatch() multiResult.closed = true multiResult.err = err pgConn.unlock() return multiResult } return multiResult } // ExecParams executes a command via the PostgreSQL extended query protocol. // // sql is a SQL command string. It may only contain one query. Parameter substitution is positional using $1, $2, $3, // etc. // // paramValues are the parameter values. It must be encoded in the format given by paramFormats. // // paramOIDs is a slice of data type OIDs for paramValues. If paramOIDs is nil, the server will infer the data type for // all parameters. Any paramOID element that is 0 that will cause the server to infer the data type for that parameter. // ExecParams will panic if len(paramOIDs) is not 0, 1, or len(paramValues). // // paramFormats is a slice of format codes determining for each paramValue column whether it is encoded in text or // binary format. If paramFormats is nil all params are text format. ExecParams will panic if // len(paramFormats) is not 0, 1, or len(paramValues). // // resultFormats is a slice of format codes determining for each result column whether it is encoded in text or // binary format. If resultFormats is nil all results will be in text format. // // ResultReader must be closed before PgConn can be used again. func (pgConn *PgConn) ExecParams(ctx context.Context, sql string, paramValues [][]byte, paramOIDs []uint32, paramFormats []int16, resultFormats []int16) *ResultReader { result := pgConn.execExtendedPrefix(ctx, paramValues) if result.closed { return result } pgConn.frontend.SendParse(&pgproto3.Parse{Query: sql, ParameterOIDs: paramOIDs}) pgConn.frontend.SendBind(&pgproto3.Bind{ParameterFormatCodes: paramFormats, Parameters: paramValues, ResultFormatCodes: resultFormats}) pgConn.execExtendedSuffix(result) return result } // ExecPrepared enqueues the execution of a prepared statement via the PostgreSQL extended query protocol. // // paramValues are the parameter values. It must be encoded in the format given by paramFormats. // // paramFormats is a slice of format codes determining for each paramValue column whether it is encoded in text or // binary format. If paramFormats is nil all params are text format. ExecPrepared will panic if // len(paramFormats) is not 0, 1, or len(paramValues). // // resultFormats is a slice of format codes determining for each result column whether it is encoded in text or // binary format. If resultFormats is nil all results will be in text format. // // ResultReader must be closed before PgConn can be used again. func (pgConn *PgConn) ExecPrepared(ctx context.Context, stmtName string, paramValues [][]byte, paramFormats []int16, resultFormats []int16) *ResultReader { result := pgConn.execExtendedPrefix(ctx, paramValues) if result.closed { return result } pgConn.frontend.SendBind(&pgproto3.Bind{PreparedStatement: stmtName, ParameterFormatCodes: paramFormats, Parameters: paramValues, ResultFormatCodes: resultFormats}) pgConn.execExtendedSuffix(result) return result } func (pgConn *PgConn) execExtendedPrefix(ctx context.Context, paramValues [][]byte) *ResultReader { pgConn.resultReader = ResultReader{ pgConn: pgConn, ctx: ctx, } result := &pgConn.resultReader if err := pgConn.lock(); err != nil { result.concludeCommand(CommandTag{}, err) result.closed = true return result } if len(paramValues) > math.MaxUint16 { result.concludeCommand(CommandTag{}, fmt.Errorf("extended protocol limited to %v parameters", math.MaxUint16)) result.closed = true pgConn.unlock() return result } if ctx != context.Background() { select { case <-ctx.Done(): result.concludeCommand(CommandTag{}, newContextAlreadyDoneError(ctx)) result.closed = true pgConn.unlock() return result default: } pgConn.contextWatcher.Watch(ctx) } return result } func (pgConn *PgConn) execExtendedSuffix(result *ResultReader) { pgConn.frontend.SendDescribe(&pgproto3.Describe{ObjectType: 'P'}) pgConn.frontend.SendExecute(&pgproto3.Execute{}) pgConn.frontend.SendSync(&pgproto3.Sync{}) err := pgConn.flushWithPotentialWriteReadDeadlock() if err != nil { pgConn.asyncClose() result.concludeCommand(CommandTag{}, err) pgConn.contextWatcher.Unwatch() result.closed = true pgConn.unlock() return } result.readUntilRowDescription() } // CopyTo executes the copy command sql and copies the results to w. func (pgConn *PgConn) CopyTo(ctx context.Context, w io.Writer, sql string) (CommandTag, error) { if err := pgConn.lock(); err != nil { return CommandTag{}, err } if ctx != context.Background() { select { case <-ctx.Done(): pgConn.unlock() return CommandTag{}, newContextAlreadyDoneError(ctx) default: } pgConn.contextWatcher.Watch(ctx) defer pgConn.contextWatcher.Unwatch() } // Send copy to command pgConn.frontend.SendQuery(&pgproto3.Query{String: sql}) err := pgConn.flushWithPotentialWriteReadDeadlock() if err != nil { pgConn.asyncClose() pgConn.unlock() return CommandTag{}, err } // Read results var commandTag CommandTag var pgErr error for { msg, err := pgConn.receiveMessage() if err != nil { pgConn.asyncClose() return CommandTag{}, normalizeTimeoutError(ctx, err) } switch msg := msg.(type) { case *pgproto3.CopyDone: case *pgproto3.CopyData: _, err := w.Write(msg.Data) if err != nil { pgConn.asyncClose() return CommandTag{}, err } case *pgproto3.ReadyForQuery: pgConn.unlock() return commandTag, pgErr case *pgproto3.CommandComplete: commandTag = pgConn.makeCommandTag(msg.CommandTag) case *pgproto3.ErrorResponse: pgErr = ErrorResponseToPgError(msg) } } } // CopyFrom executes the copy command sql and copies all of r to the PostgreSQL server. // // Note: context cancellation will only interrupt operations on the underlying PostgreSQL network connection. Reads on r // could still block. func (pgConn *PgConn) CopyFrom(ctx context.Context, r io.Reader, sql string) (CommandTag, error) { if err := pgConn.lock(); err != nil { return CommandTag{}, err } defer pgConn.unlock() if ctx != context.Background() { select { case <-ctx.Done(): return CommandTag{}, newContextAlreadyDoneError(ctx) default: } pgConn.contextWatcher.Watch(ctx) defer pgConn.contextWatcher.Unwatch() } // Send copy from query pgConn.frontend.SendQuery(&pgproto3.Query{String: sql}) err := pgConn.flushWithPotentialWriteReadDeadlock() if err != nil { pgConn.asyncClose() return CommandTag{}, err } // Send copy data abortCopyChan := make(chan struct{}) copyErrChan := make(chan error, 1) signalMessageChan := pgConn.signalMessage() var wg sync.WaitGroup wg.Add(1) go func() { defer wg.Done() buf := iobufpool.Get(65536) defer iobufpool.Put(buf) (*buf)[0] = 'd' for { n, readErr := r.Read((*buf)[5:cap(*buf)]) if n > 0 { *buf = (*buf)[0 : n+5] pgio.SetInt32((*buf)[1:], int32(n+4)) writeErr := pgConn.frontend.SendUnbufferedEncodedCopyData(*buf) if writeErr != nil { // Write errors are always fatal, but we can't use asyncClose because we are in a different goroutine. Not // setting pgConn.status or closing pgConn.cleanupDone for the same reason. pgConn.conn.Close() copyErrChan <- writeErr return } } if readErr != nil { copyErrChan <- readErr return } select { case <-abortCopyChan: return default: } } }() var pgErr error var copyErr error for copyErr == nil && pgErr == nil { select { case copyErr = <-copyErrChan: case <-signalMessageChan: // If pgConn.receiveMessage encounters an error it will call pgConn.asyncClose. But that is a race condition with // the goroutine. So instead check pgConn.bufferingReceiveErr which will have been set by the signalMessage. If an // error is found then forcibly close the connection without sending the Terminate message. if err := pgConn.bufferingReceiveErr; err != nil { pgConn.status = connStatusClosed pgConn.conn.Close() close(pgConn.cleanupDone) return CommandTag{}, normalizeTimeoutError(ctx, err) } msg, _ := pgConn.receiveMessage() switch msg := msg.(type) { case *pgproto3.ErrorResponse: pgErr = ErrorResponseToPgError(msg) default: signalMessageChan = pgConn.signalMessage() } } } close(abortCopyChan) // Make sure io goroutine finishes before writing. wg.Wait() if copyErr == io.EOF || pgErr != nil { pgConn.frontend.Send(&pgproto3.CopyDone{}) } else { pgConn.frontend.Send(&pgproto3.CopyFail{Message: copyErr.Error()}) } err = pgConn.flushWithPotentialWriteReadDeadlock() if err != nil { pgConn.asyncClose() return CommandTag{}, err } // Read results var commandTag CommandTag for { msg, err := pgConn.receiveMessage() if err != nil { pgConn.asyncClose() return CommandTag{}, normalizeTimeoutError(ctx, err) } switch msg := msg.(type) { case *pgproto3.ReadyForQuery: return commandTag, pgErr case *pgproto3.CommandComplete: commandTag = pgConn.makeCommandTag(msg.CommandTag) case *pgproto3.ErrorResponse: pgErr = ErrorResponseToPgError(msg) } } } // MultiResultReader is a reader for a command that could return multiple results such as Exec or ExecBatch. type MultiResultReader struct { pgConn *PgConn ctx context.Context pipeline *Pipeline rr *ResultReader closed bool err error } // ReadAll reads all available results. Calling ReadAll is mutually exclusive with all other MultiResultReader methods. func (mrr *MultiResultReader) ReadAll() ([]*Result, error) { var results []*Result for mrr.NextResult() { results = append(results, mrr.ResultReader().Read()) } err := mrr.Close() return results, err } func (mrr *MultiResultReader) receiveMessage() (pgproto3.BackendMessage, error) { msg, err := mrr.pgConn.receiveMessage() if err != nil { mrr.pgConn.contextWatcher.Unwatch() mrr.err = normalizeTimeoutError(mrr.ctx, err) mrr.closed = true mrr.pgConn.asyncClose() return nil, mrr.err } switch msg := msg.(type) { case *pgproto3.ReadyForQuery: mrr.closed = true if mrr.pipeline != nil { mrr.pipeline.expectedReadyForQueryCount-- } else { mrr.pgConn.contextWatcher.Unwatch() mrr.pgConn.unlock() } case *pgproto3.ErrorResponse: mrr.err = ErrorResponseToPgError(msg) } return msg, nil } // NextResult returns advances the MultiResultReader to the next result and returns true if a result is available. func (mrr *MultiResultReader) NextResult() bool { for !mrr.closed && mrr.err == nil { msg, err := mrr.receiveMessage() if err != nil { return false } switch msg := msg.(type) { case *pgproto3.RowDescription: mrr.pgConn.resultReader = ResultReader{ pgConn: mrr.pgConn, multiResultReader: mrr, ctx: mrr.ctx, fieldDescriptions: mrr.pgConn.convertRowDescription(mrr.pgConn.fieldDescriptions[:], msg), } mrr.rr = &mrr.pgConn.resultReader return true case *pgproto3.CommandComplete: mrr.pgConn.resultReader = ResultReader{ commandTag: mrr.pgConn.makeCommandTag(msg.CommandTag), commandConcluded: true, closed: true, } mrr.rr = &mrr.pgConn.resultReader return true case *pgproto3.EmptyQueryResponse: return false } } return false } // ResultReader returns the current ResultReader. func (mrr *MultiResultReader) ResultReader() *ResultReader { return mrr.rr } // Close closes the MultiResultReader and returns the first error that occurred during the MultiResultReader's use. func (mrr *MultiResultReader) Close() error { for !mrr.closed { _, err := mrr.receiveMessage() if err != nil { return mrr.err } } return mrr.err } // ResultReader is a reader for the result of a single query. type ResultReader struct { pgConn *PgConn multiResultReader *MultiResultReader pipeline *Pipeline ctx context.Context fieldDescriptions []FieldDescription rowValues [][]byte commandTag CommandTag commandConcluded bool closed bool err error } // Result is the saved query response that is returned by calling Read on a ResultReader. type Result struct { FieldDescriptions []FieldDescription Rows [][][]byte CommandTag CommandTag Err error } // Read saves the query response to a Result. func (rr *ResultReader) Read() *Result { br := &Result{} for rr.NextRow() { if br.FieldDescriptions == nil { br.FieldDescriptions = make([]FieldDescription, len(rr.FieldDescriptions())) copy(br.FieldDescriptions, rr.FieldDescriptions()) } values := rr.Values() row := make([][]byte, len(values)) for i := range row { row[i] = make([]byte, len(values[i])) copy(row[i], values[i]) } br.Rows = append(br.Rows, row) } br.CommandTag, br.Err = rr.Close() return br } // NextRow advances the ResultReader to the next row and returns true if a row is available. func (rr *ResultReader) NextRow() bool { for !rr.commandConcluded { msg, err := rr.receiveMessage() if err != nil { return false } switch msg := msg.(type) { case *pgproto3.DataRow: rr.rowValues = msg.Values return true } } return false } // FieldDescriptions returns the field descriptions for the current result set. The returned slice is only valid until // the ResultReader is closed. It may return nil (for example, if the query did not return a result set or an error was // encountered.) func (rr *ResultReader) FieldDescriptions() []FieldDescription { return rr.fieldDescriptions } // Values returns the current row data. NextRow must have been previously been called. The returned [][]byte is only // valid until the next NextRow call or the ResultReader is closed. func (rr *ResultReader) Values() [][]byte { return rr.rowValues } // Close consumes any remaining result data and returns the command tag or // error. func (rr *ResultReader) Close() (CommandTag, error) { if rr.closed { return rr.commandTag, rr.err } rr.closed = true for !rr.commandConcluded { _, err := rr.receiveMessage() if err != nil { return CommandTag{}, rr.err } } if rr.multiResultReader == nil && rr.pipeline == nil { for { msg, err := rr.receiveMessage() if err != nil { return CommandTag{}, rr.err } switch msg := msg.(type) { // Detect a deferred constraint violation where the ErrorResponse is sent after CommandComplete. case *pgproto3.ErrorResponse: rr.err = ErrorResponseToPgError(msg) case *pgproto3.ReadyForQuery: rr.pgConn.contextWatcher.Unwatch() rr.pgConn.unlock() return rr.commandTag, rr.err } } } return rr.commandTag, rr.err } // readUntilRowDescription ensures the ResultReader's fieldDescriptions are loaded. It does not return an error as any // error will be stored in the ResultReader. func (rr *ResultReader) readUntilRowDescription() { for !rr.commandConcluded { // Peek before receive to avoid consuming a DataRow if the result set does not include a RowDescription method. // This should never happen under normal pgconn usage, but it is possible if SendBytes and ReceiveResults are // manually used to construct a query that does not issue a describe statement. msg, _ := rr.pgConn.peekMessage() if _, ok := msg.(*pgproto3.DataRow); ok { return } // Consume the message msg, _ = rr.receiveMessage() if _, ok := msg.(*pgproto3.RowDescription); ok { return } } } func (rr *ResultReader) receiveMessage() (msg pgproto3.BackendMessage, err error) { if rr.multiResultReader == nil { msg, err = rr.pgConn.receiveMessage() } else { msg, err = rr.multiResultReader.receiveMessage() } if err != nil { err = normalizeTimeoutError(rr.ctx, err) rr.concludeCommand(CommandTag{}, err) rr.pgConn.contextWatcher.Unwatch() rr.closed = true if rr.multiResultReader == nil { rr.pgConn.asyncClose() } return nil, rr.err } switch msg := msg.(type) { case *pgproto3.RowDescription: rr.fieldDescriptions = rr.pgConn.convertRowDescription(rr.pgConn.fieldDescriptions[:], msg) case *pgproto3.CommandComplete: rr.concludeCommand(rr.pgConn.makeCommandTag(msg.CommandTag), nil) case *pgproto3.EmptyQueryResponse: rr.concludeCommand(CommandTag{}, nil) case *pgproto3.ErrorResponse: rr.concludeCommand(CommandTag{}, ErrorResponseToPgError(msg)) } return msg, nil } func (rr *ResultReader) concludeCommand(commandTag CommandTag, err error) { // Keep the first error that is recorded. Store the error before checking if the command is already concluded to // allow for receiving an error after CommandComplete but before ReadyForQuery. if err != nil && rr.err == nil { rr.err = err } if rr.commandConcluded { return } rr.commandTag = commandTag rr.rowValues = nil rr.commandConcluded = true } // Batch is a collection of queries that can be sent to the PostgreSQL server in a single round-trip. type Batch struct { buf []byte err error } // ExecParams appends an ExecParams command to the batch. See PgConn.ExecParams for parameter descriptions. func (batch *Batch) ExecParams(sql string, paramValues [][]byte, paramOIDs []uint32, paramFormats []int16, resultFormats []int16) { if batch.err != nil { return } batch.buf, batch.err = (&pgproto3.Parse{Query: sql, ParameterOIDs: paramOIDs}).Encode(batch.buf) if batch.err != nil { return } batch.ExecPrepared("", paramValues, paramFormats, resultFormats) } // ExecPrepared appends an ExecPrepared e command to the batch. See PgConn.ExecPrepared for parameter descriptions. func (batch *Batch) ExecPrepared(stmtName string, paramValues [][]byte, paramFormats []int16, resultFormats []int16) { if batch.err != nil { return } batch.buf, batch.err = (&pgproto3.Bind{PreparedStatement: stmtName, ParameterFormatCodes: paramFormats, Parameters: paramValues, ResultFormatCodes: resultFormats}).Encode(batch.buf) if batch.err != nil { return } batch.buf, batch.err = (&pgproto3.Describe{ObjectType: 'P'}).Encode(batch.buf) if batch.err != nil { return } batch.buf, batch.err = (&pgproto3.Execute{}).Encode(batch.buf) if batch.err != nil { return } } // ExecBatch executes all the queries in batch in a single round-trip. Execution is implicitly transactional unless a // transaction is already in progress or SQL contains transaction control statements. This is a simpler way of executing // multiple queries in a single round trip than using pipeline mode. func (pgConn *PgConn) ExecBatch(ctx context.Context, batch *Batch) *MultiResultReader { if batch.err != nil { return &MultiResultReader{ closed: true, err: batch.err, } } if err := pgConn.lock(); err != nil { return &MultiResultReader{ closed: true, err: err, } } pgConn.multiResultReader = MultiResultReader{ pgConn: pgConn, ctx: ctx, } multiResult := &pgConn.multiResultReader if ctx != context.Background() { select { case <-ctx.Done(): multiResult.closed = true multiResult.err = newContextAlreadyDoneError(ctx) pgConn.unlock() return multiResult default: } pgConn.contextWatcher.Watch(ctx) } batch.buf, batch.err = (&pgproto3.Sync{}).Encode(batch.buf) if batch.err != nil { multiResult.closed = true multiResult.err = batch.err pgConn.unlock() return multiResult } pgConn.enterPotentialWriteReadDeadlock() defer pgConn.exitPotentialWriteReadDeadlock() _, err := pgConn.conn.Write(batch.buf) if err != nil { multiResult.closed = true multiResult.err = err pgConn.unlock() return multiResult } return multiResult } // EscapeString escapes a string such that it can safely be interpolated into a SQL command string. It does not include // the surrounding single quotes. // // The current implementation requires that standard_conforming_strings=on and client_encoding="UTF8". If these // conditions are not met an error will be returned. It is possible these restrictions will be lifted in the future. func (pgConn *PgConn) EscapeString(s string) (string, error) { if pgConn.ParameterStatus("standard_conforming_strings") != "on" { return "", errors.New("EscapeString must be run with standard_conforming_strings=on") } if pgConn.ParameterStatus("client_encoding") != "UTF8" { return "", errors.New("EscapeString must be run with client_encoding=UTF8") } return strings.Replace(s, "'", "''", -1), nil } // CheckConn checks the underlying connection without writing any bytes. This is currently implemented by doing a read // with a very short deadline. This can be useful because a TCP connection can be broken such that a write will appear // to succeed even though it will never actually reach the server. Reading immediately before a write will detect this // condition. If this is done immediately before sending a query it reduces the chances a query will be sent that fails // without the client knowing whether the server received it or not. // // Deprecated: CheckConn is deprecated in favor of Ping. CheckConn cannot detect all types of broken connections where // the write would still appear to succeed. Prefer Ping unless on a high latency connection. func (pgConn *PgConn) CheckConn() error { ctx, cancel := context.WithTimeout(context.Background(), 1*time.Millisecond) defer cancel() _, err := pgConn.ReceiveMessage(ctx) if err != nil { if !Timeout(err) { return err } } return nil } // Ping pings the server. This can be useful because a TCP connection can be broken such that a write will appear to // succeed even though it will never actually reach the server. Pinging immediately before sending a query reduces the // chances a query will be sent that fails without the client knowing whether the server received it or not. func (pgConn *PgConn) Ping(ctx context.Context) error { return pgConn.Exec(ctx, "-- ping").Close() } // makeCommandTag makes a CommandTag. It does not retain a reference to buf or buf's underlying memory. func (pgConn *PgConn) makeCommandTag(buf []byte) CommandTag { return CommandTag{s: string(buf)} } // enterPotentialWriteReadDeadlock must be called before a write that could deadlock if the server is simultaneously // blocked writing to us. func (pgConn *PgConn) enterPotentialWriteReadDeadlock() { // The time to wait is somewhat arbitrary. A Write should only take as long as the syscall and memcpy to the OS // outbound network buffer unless the buffer is full (which potentially is a block). It needs to be long enough for // the normal case, but short enough not to kill performance if a block occurs. // // In addition, on Windows the default timer resolution is 15.6ms. So setting the timer to less than that is // ineffective. if pgConn.slowWriteTimer.Reset(15 * time.Millisecond) { panic("BUG: slow write timer already active") } } // exitPotentialWriteReadDeadlock must be called after a call to enterPotentialWriteReadDeadlock. func (pgConn *PgConn) exitPotentialWriteReadDeadlock() { if !pgConn.slowWriteTimer.Stop() { // The timer starts its function in a separate goroutine. It is necessary to ensure the background reader has // started before calling Stop. Otherwise, the background reader may not be stopped. That on its own is not a // serious problem. But what is a serious problem is that the background reader may start at an inopportune time in // a subsequent query. For example, if a subsequent query was canceled then a deadline may be set on the net.Conn to // interrupt an in-progress read. After the read is interrupted, but before the deadline is cleared, the background // reader could start and read a deadline error. Then the next query would receive the an unexpected deadline error. <-pgConn.bgReaderStarted pgConn.bgReader.Stop() } } func (pgConn *PgConn) flushWithPotentialWriteReadDeadlock() error { pgConn.enterPotentialWriteReadDeadlock() defer pgConn.exitPotentialWriteReadDeadlock() err := pgConn.frontend.Flush() return err } // SyncConn prepares the underlying net.Conn for direct use. PgConn may internally buffer reads or use goroutines for // background IO. This means that any direct use of the underlying net.Conn may be corrupted if a read is already // buffered or a read is in progress. SyncConn drains read buffers and stops background IO. In some cases this may // require sending a ping to the server. ctx can be used to cancel this operation. This should be called before any // operation that will use the underlying net.Conn directly. e.g. Before Conn() or Hijack(). // // This should not be confused with the PostgreSQL protocol Sync message. func (pgConn *PgConn) SyncConn(ctx context.Context) error { for i := 0; i < 10; i++ { if pgConn.bgReader.Status() == bgreader.StatusStopped && pgConn.frontend.ReadBufferLen() == 0 { return nil } err := pgConn.Ping(ctx) if err != nil { return fmt.Errorf("SyncConn: Ping failed while syncing conn: %w", err) } } // This should never happen. Only way I can imagine this occurring is if the server is constantly sending data such as // LISTEN/NOTIFY or log notifications such that we never can get an empty buffer. return errors.New("SyncConn: conn never synchronized") } // HijackedConn is the result of hijacking a connection. // // Due to the necessary exposure of internal implementation details, it is not covered by the semantic versioning // compatibility. type HijackedConn struct { Conn net.Conn PID uint32 // backend pid SecretKey uint32 // key to use to send a cancel query message to the server ParameterStatuses map[string]string // parameters that have been reported by the server TxStatus byte Frontend *pgproto3.Frontend Config *Config } // Hijack extracts the internal connection data. pgConn must be in an idle state. SyncConn should be called immediately // before Hijack. pgConn is unusable after hijacking. Hijacking is typically only useful when using pgconn to establish // a connection, but taking complete control of the raw connection after that (e.g. a load balancer or proxy). // // Due to the necessary exposure of internal implementation details, it is not covered by the semantic versioning // compatibility. func (pgConn *PgConn) Hijack() (*HijackedConn, error) { if err := pgConn.lock(); err != nil { return nil, err } pgConn.status = connStatusClosed return &HijackedConn{ Conn: pgConn.conn, PID: pgConn.pid, SecretKey: pgConn.secretKey, ParameterStatuses: pgConn.parameterStatuses, TxStatus: pgConn.txStatus, Frontend: pgConn.frontend, Config: pgConn.config, }, nil } // Construct created a PgConn from an already established connection to a PostgreSQL server. This is the inverse of // PgConn.Hijack. The connection must be in an idle state. // // hc.Frontend is replaced by a new pgproto3.Frontend built by hc.Config.BuildFrontend. // // Due to the necessary exposure of internal implementation details, it is not covered by the semantic versioning // compatibility. func Construct(hc *HijackedConn) (*PgConn, error) { pgConn := &PgConn{ conn: hc.Conn, pid: hc.PID, secretKey: hc.SecretKey, parameterStatuses: hc.ParameterStatuses, txStatus: hc.TxStatus, frontend: hc.Frontend, config: hc.Config, status: connStatusIdle, cleanupDone: make(chan struct{}), } pgConn.contextWatcher = newContextWatcher(pgConn.conn) pgConn.bgReader = bgreader.New(pgConn.conn) pgConn.slowWriteTimer = time.AfterFunc(time.Duration(math.MaxInt64), func() { pgConn.bgReader.Start() pgConn.bgReaderStarted <- struct{}{} }, ) pgConn.slowWriteTimer.Stop() pgConn.bgReaderStarted = make(chan struct{}) pgConn.frontend = hc.Config.BuildFrontend(pgConn.bgReader, pgConn.conn) return pgConn, nil } // Pipeline represents a connection in pipeline mode. // // SendPrepare, SendQueryParams, and SendQueryPrepared queue requests to the server. These requests are not written until // pipeline is flushed by Flush or Sync. Sync must be called after the last request is queued. Requests between // synchronization points are implicitly transactional unless explicit transaction control statements have been issued. // // The context the pipeline was started with is in effect for the entire life of the Pipeline. // // For a deeper understanding of pipeline mode see the PostgreSQL documentation for the extended query protocol // (https://www.postgresql.org/docs/current/protocol-flow.html#PROTOCOL-FLOW-EXT-QUERY) and the libpq pipeline mode // (https://www.postgresql.org/docs/current/libpq-pipeline-mode.html). type Pipeline struct { conn *PgConn ctx context.Context expectedReadyForQueryCount int pendingSync bool err error closed bool } // PipelineSync is returned by GetResults when a ReadyForQuery message is received. type PipelineSync struct{} // CloseComplete is returned by GetResults when a CloseComplete message is received. type CloseComplete struct{} // StartPipeline switches the connection to pipeline mode and returns a *Pipeline. In pipeline mode requests can be sent // to the server without waiting for a response. Close must be called on the returned *Pipeline to return the connection // to normal mode. While in pipeline mode, no methods that communicate with the server may be called except // CancelRequest and Close. ctx is in effect for entire life of the *Pipeline. // // Prefer ExecBatch when only sending one group of queries at once. func (pgConn *PgConn) StartPipeline(ctx context.Context) *Pipeline { if err := pgConn.lock(); err != nil { return &Pipeline{ closed: true, err: err, } } pgConn.pipeline = Pipeline{ conn: pgConn, ctx: ctx, } pipeline := &pgConn.pipeline if ctx != context.Background() { select { case <-ctx.Done(): pipeline.closed = true pipeline.err = newContextAlreadyDoneError(ctx) pgConn.unlock() return pipeline default: } pgConn.contextWatcher.Watch(ctx) } return pipeline } // SendPrepare is the pipeline version of *PgConn.Prepare. func (p *Pipeline) SendPrepare(name, sql string, paramOIDs []uint32) { if p.closed { return } p.pendingSync = true p.conn.frontend.SendParse(&pgproto3.Parse{Name: name, Query: sql, ParameterOIDs: paramOIDs}) p.conn.frontend.SendDescribe(&pgproto3.Describe{ObjectType: 'S', Name: name}) } // SendDeallocate deallocates a prepared statement. func (p *Pipeline) SendDeallocate(name string) { if p.closed { return } p.pendingSync = true p.conn.frontend.SendClose(&pgproto3.Close{ObjectType: 'S', Name: name}) } // SendQueryParams is the pipeline version of *PgConn.QueryParams. func (p *Pipeline) SendQueryParams(sql string, paramValues [][]byte, paramOIDs []uint32, paramFormats []int16, resultFormats []int16) { if p.closed { return } p.pendingSync = true p.conn.frontend.SendParse(&pgproto3.Parse{Query: sql, ParameterOIDs: paramOIDs}) p.conn.frontend.SendBind(&pgproto3.Bind{ParameterFormatCodes: paramFormats, Parameters: paramValues, ResultFormatCodes: resultFormats}) p.conn.frontend.SendDescribe(&pgproto3.Describe{ObjectType: 'P'}) p.conn.frontend.SendExecute(&pgproto3.Execute{}) } // SendQueryPrepared is the pipeline version of *PgConn.QueryPrepared. func (p *Pipeline) SendQueryPrepared(stmtName string, paramValues [][]byte, paramFormats []int16, resultFormats []int16) { if p.closed { return } p.pendingSync = true p.conn.frontend.SendBind(&pgproto3.Bind{PreparedStatement: stmtName, ParameterFormatCodes: paramFormats, Parameters: paramValues, ResultFormatCodes: resultFormats}) p.conn.frontend.SendDescribe(&pgproto3.Describe{ObjectType: 'P'}) p.conn.frontend.SendExecute(&pgproto3.Execute{}) } // Flush flushes the queued requests without establishing a synchronization point. func (p *Pipeline) Flush() error { if p.closed { if p.err != nil { return p.err } return errors.New("pipeline closed") } err := p.conn.flushWithPotentialWriteReadDeadlock() if err != nil { err = normalizeTimeoutError(p.ctx, err) p.conn.asyncClose() p.conn.contextWatcher.Unwatch() p.conn.unlock() p.closed = true p.err = err return err } return nil } // Sync establishes a synchronization point and flushes the queued requests. func (p *Pipeline) Sync() error { if p.closed { if p.err != nil { return p.err } return errors.New("pipeline closed") } p.conn.frontend.SendSync(&pgproto3.Sync{}) err := p.Flush() if err != nil { return err } p.pendingSync = false p.expectedReadyForQueryCount++ return nil } // GetResults gets the next results. If results are present, results may be a *ResultReader, *StatementDescription, or // *PipelineSync. If an ErrorResponse is received from the server, results will be nil and err will be a *PgError. If no // results are available, results and err will both be nil. func (p *Pipeline) GetResults() (results any, err error) { if p.closed { if p.err != nil { return nil, p.err } return nil, errors.New("pipeline closed") } if p.expectedReadyForQueryCount == 0 { return nil, nil } return p.getResults() } func (p *Pipeline) getResults() (results any, err error) { for { msg, err := p.conn.receiveMessage() if err != nil { p.closed = true p.err = err p.conn.asyncClose() return nil, normalizeTimeoutError(p.ctx, err) } switch msg := msg.(type) { case *pgproto3.RowDescription: p.conn.resultReader = ResultReader{ pgConn: p.conn, pipeline: p, ctx: p.ctx, fieldDescriptions: p.conn.convertRowDescription(p.conn.fieldDescriptions[:], msg), } return &p.conn.resultReader, nil case *pgproto3.CommandComplete: p.conn.resultReader = ResultReader{ commandTag: p.conn.makeCommandTag(msg.CommandTag), commandConcluded: true, closed: true, } return &p.conn.resultReader, nil case *pgproto3.ParseComplete: peekedMsg, err := p.conn.peekMessage() if err != nil { p.conn.asyncClose() return nil, normalizeTimeoutError(p.ctx, err) } if _, ok := peekedMsg.(*pgproto3.ParameterDescription); ok { return p.getResultsPrepare() } case *pgproto3.CloseComplete: return &CloseComplete{}, nil case *pgproto3.ReadyForQuery: p.expectedReadyForQueryCount-- return &PipelineSync{}, nil case *pgproto3.ErrorResponse: pgErr := ErrorResponseToPgError(msg) return nil, pgErr } } } func (p *Pipeline) getResultsPrepare() (*StatementDescription, error) { psd := &StatementDescription{} for { msg, err := p.conn.receiveMessage() if err != nil { p.conn.asyncClose() return nil, normalizeTimeoutError(p.ctx, err) } switch msg := msg.(type) { case *pgproto3.ParameterDescription: psd.ParamOIDs = make([]uint32, len(msg.ParameterOIDs)) copy(psd.ParamOIDs, msg.ParameterOIDs) case *pgproto3.RowDescription: psd.Fields = p.conn.convertRowDescription(nil, msg) return psd, nil // NoData is returned instead of RowDescription when there is no expected result. e.g. An INSERT without a RETURNING // clause. case *pgproto3.NoData: return psd, nil // These should never happen here. But don't take chances that could lead to a deadlock. case *pgproto3.ErrorResponse: pgErr := ErrorResponseToPgError(msg) return nil, pgErr case *pgproto3.CommandComplete: p.conn.asyncClose() return nil, errors.New("BUG: received CommandComplete while handling Describe") case *pgproto3.ReadyForQuery: p.conn.asyncClose() return nil, errors.New("BUG: received ReadyForQuery while handling Describe") } } } // Close closes the pipeline and returns the connection to normal mode. func (p *Pipeline) Close() error { if p.closed { return p.err } p.closed = true if p.pendingSync { p.conn.asyncClose() p.err = errors.New("pipeline has unsynced requests") p.conn.contextWatcher.Unwatch() p.conn.unlock() return p.err } for p.expectedReadyForQueryCount > 0 { _, err := p.getResults() if err != nil { p.err = err var pgErr *PgError if !errors.As(err, &pgErr) { p.conn.asyncClose() break } } } p.conn.contextWatcher.Unwatch() p.conn.unlock() return p.err }