// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "math" "github.com/golang/geo/r3" ) // // This file contains documentation of the various coordinate systems used // throughout the library. Most importantly, S2 defines a framework for // decomposing the unit sphere into a hierarchy of "cells". Each cell is a // quadrilateral bounded by four geodesics. The top level of the hierarchy is // obtained by projecting the six faces of a cube onto the unit sphere, and // lower levels are obtained by subdividing each cell into four children // recursively. Cells are numbered such that sequentially increasing cells // follow a continuous space-filling curve over the entire sphere. The // transformation is designed to make the cells at each level fairly uniform // in size. // ////////////////////////// S2 Cell Decomposition ///////////////////////// // // The following methods define the cube-to-sphere projection used by // the Cell decomposition. // // In the process of converting a latitude-longitude pair to a 64-bit cell // id, the following coordinate systems are used: // // (id) // An CellID is a 64-bit encoding of a face and a Hilbert curve position // on that face. The Hilbert curve position implicitly encodes both the // position of a cell and its subdivision level (see s2cellid.go). // // (face, i, j) // Leaf-cell coordinates. "i" and "j" are integers in the range // [0,(2**30)-1] that identify a particular leaf cell on the given face. // The (i, j) coordinate system is right-handed on each face, and the // faces are oriented such that Hilbert curves connect continuously from // one face to the next. // // (face, s, t) // Cell-space coordinates. "s" and "t" are real numbers in the range // [0,1] that identify a point on the given face. For example, the point // (s, t) = (0.5, 0.5) corresponds to the center of the top-level face // cell. This point is also a vertex of exactly four cells at each // subdivision level greater than zero. // // (face, si, ti) // Discrete cell-space coordinates. These are obtained by multiplying // "s" and "t" by 2**31 and rounding to the nearest unsigned integer. // Discrete coordinates lie in the range [0,2**31]. This coordinate // system can represent the edge and center positions of all cells with // no loss of precision (including non-leaf cells). In binary, each // coordinate of a level-k cell center ends with a 1 followed by // (30 - k) 0s. The coordinates of its edges end with (at least) // (31 - k) 0s. // // (face, u, v) // Cube-space coordinates in the range [-1,1]. To make the cells at each // level more uniform in size after they are projected onto the sphere, // we apply a nonlinear transformation of the form u=f(s), v=f(t). // The (u, v) coordinates after this transformation give the actual // coordinates on the cube face (modulo some 90 degree rotations) before // it is projected onto the unit sphere. // // (face, u, v, w) // Per-face coordinate frame. This is an extension of the (face, u, v) // cube-space coordinates that adds a third axis "w" in the direction of // the face normal. It is always a right-handed 3D coordinate system. // Cube-space coordinates can be converted to this frame by setting w=1, // while (u,v,w) coordinates can be projected onto the cube face by // dividing by w, i.e. (face, u/w, v/w). // // (x, y, z) // Direction vector (Point). Direction vectors are not necessarily unit // length, and are often chosen to be points on the biunit cube // [-1,+1]x[-1,+1]x[-1,+1]. They can be be normalized to obtain the // corresponding point on the unit sphere. // // (lat, lng) // Latitude and longitude (LatLng). Latitudes must be between -90 and // 90 degrees inclusive, and longitudes must be between -180 and 180 // degrees inclusive. // // Note that the (i, j), (s, t), (si, ti), and (u, v) coordinate systems are // right-handed on all six faces. // // // There are a number of different projections from cell-space (s,t) to // cube-space (u,v): linear, quadratic, and tangent. They have the following // tradeoffs: // // Linear - This is the fastest transformation, but also produces the least // uniform cell sizes. Cell areas vary by a factor of about 5.2, with the // largest cells at the center of each face and the smallest cells in // the corners. // // Tangent - Transforming the coordinates via Atan makes the cell sizes // more uniform. The areas vary by a maximum ratio of 1.4 as opposed to a // maximum ratio of 5.2. However, each call to Atan is about as expensive // as all of the other calculations combined when converting from points to // cell ids, i.e. it reduces performance by a factor of 3. // // Quadratic - This is an approximation of the tangent projection that // is much faster and produces cells that are almost as uniform in size. // It is about 3 times faster than the tangent projection for converting // cell ids to points or vice versa. Cell areas vary by a maximum ratio of // about 2.1. // // Here is a table comparing the cell uniformity using each projection. Area // Ratio is the maximum ratio over all subdivision levels of the largest cell // area to the smallest cell area at that level, Edge Ratio is the maximum // ratio of the longest edge of any cell to the shortest edge of any cell at // the same level, and Diag Ratio is the ratio of the longest diagonal of // any cell to the shortest diagonal of any cell at the same level. // // Area Edge Diag // Ratio Ratio Ratio // ----------------------------------- // Linear: 5.200 2.117 2.959 // Tangent: 1.414 1.414 1.704 // Quadratic: 2.082 1.802 1.932 // // The worst-case cell aspect ratios are about the same with all three // projections. The maximum ratio of the longest edge to the shortest edge // within the same cell is about 1.4 and the maximum ratio of the diagonals // within the same cell is about 1.7. // // For Go we have chosen to use only the Quadratic approach. Other language // implementations may offer other choices. const ( // maxSiTi is the maximum value of an si- or ti-coordinate. // It is one shift more than maxSize. The range of valid (si,ti) // values is [0..maxSiTi]. maxSiTi = maxSize << 1 ) // siTiToST converts an si- or ti-value to the corresponding s- or t-value. // Value is capped at 1.0 because there is no DCHECK in Go. func siTiToST(si uint32) float64 { if si > maxSiTi { return 1.0 } return float64(si) / float64(maxSiTi) } // stToSiTi converts the s- or t-value to the nearest si- or ti-coordinate. // The result may be outside the range of valid (si,ti)-values. Value of // 0.49999999999999994 (math.NextAfter(0.5, -1)), will be incorrectly rounded up. func stToSiTi(s float64) uint32 { if s < 0 { return uint32(s*maxSiTi - 0.5) } return uint32(s*maxSiTi + 0.5) } // stToUV converts an s or t value to the corresponding u or v value. // This is a non-linear transformation from [-1,1] to [-1,1] that // attempts to make the cell sizes more uniform. // This uses what the C++ version calls 'the quadratic transform'. func stToUV(s float64) float64 { if s >= 0.5 { return (1 / 3.) * (4*s*s - 1) } return (1 / 3.) * (1 - 4*(1-s)*(1-s)) } // uvToST is the inverse of the stToUV transformation. Note that it // is not always true that uvToST(stToUV(x)) == x due to numerical // errors. func uvToST(u float64) float64 { if u >= 0 { return 0.5 * math.Sqrt(1+3*u) } return 1 - 0.5*math.Sqrt(1-3*u) } // face returns face ID from 0 to 5 containing the r. For points on the // boundary between faces, the result is arbitrary but deterministic. func face(r r3.Vector) int { f := r.LargestComponent() switch { case f == r3.XAxis && r.X < 0: f += 3 case f == r3.YAxis && r.Y < 0: f += 3 case f == r3.ZAxis && r.Z < 0: f += 3 } return int(f) } // validFaceXYZToUV given a valid face for the given point r (meaning that // dot product of r with the face normal is positive), returns // the corresponding u and v values, which may lie outside the range [-1,1]. func validFaceXYZToUV(face int, r r3.Vector) (float64, float64) { switch face { case 0: return r.Y / r.X, r.Z / r.X case 1: return -r.X / r.Y, r.Z / r.Y case 2: return -r.X / r.Z, -r.Y / r.Z case 3: return r.Z / r.X, r.Y / r.X case 4: return r.Z / r.Y, -r.X / r.Y } return -r.Y / r.Z, -r.X / r.Z } // xyzToFaceUV converts a direction vector (not necessarily unit length) to // (face, u, v) coordinates. func xyzToFaceUV(r r3.Vector) (f int, u, v float64) { f = face(r) u, v = validFaceXYZToUV(f, r) return f, u, v } // faceUVToXYZ turns face and UV coordinates into an unnormalized 3 vector. func faceUVToXYZ(face int, u, v float64) r3.Vector { switch face { case 0: return r3.Vector{1, u, v} case 1: return r3.Vector{-u, 1, v} case 2: return r3.Vector{-u, -v, 1} case 3: return r3.Vector{-1, -v, -u} case 4: return r3.Vector{v, -1, -u} default: return r3.Vector{v, u, -1} } } // faceXYZToUV returns the u and v values (which may lie outside the range // [-1, 1]) if the dot product of the point p with the given face normal is positive. func faceXYZToUV(face int, p Point) (u, v float64, ok bool) { switch face { case 0: if p.X <= 0 { return 0, 0, false } case 1: if p.Y <= 0 { return 0, 0, false } case 2: if p.Z <= 0 { return 0, 0, false } case 3: if p.X >= 0 { return 0, 0, false } case 4: if p.Y >= 0 { return 0, 0, false } default: if p.Z >= 0 { return 0, 0, false } } u, v = validFaceXYZToUV(face, p.Vector) return u, v, true } // faceXYZtoUVW transforms the given point P to the (u,v,w) coordinate frame of the given // face where the w-axis represents the face normal. func faceXYZtoUVW(face int, p Point) Point { // The result coordinates are simply the dot products of P with the (u,v,w) // axes for the given face (see faceUVWAxes). switch face { case 0: return Point{r3.Vector{p.Y, p.Z, p.X}} case 1: return Point{r3.Vector{-p.X, p.Z, p.Y}} case 2: return Point{r3.Vector{-p.X, -p.Y, p.Z}} case 3: return Point{r3.Vector{-p.Z, -p.Y, -p.X}} case 4: return Point{r3.Vector{-p.Z, p.X, -p.Y}} default: return Point{r3.Vector{p.Y, p.X, -p.Z}} } } // faceSiTiToXYZ transforms the (si, ti) coordinates to a (not necessarily // unit length) Point on the given face. func faceSiTiToXYZ(face int, si, ti uint32) Point { return Point{faceUVToXYZ(face, stToUV(siTiToST(si)), stToUV(siTiToST(ti)))} } // xyzToFaceSiTi transforms the (not necessarily unit length) Point to // (face, si, ti) coordinates and the level the Point is at. func xyzToFaceSiTi(p Point) (face int, si, ti uint32, level int) { face, u, v := xyzToFaceUV(p.Vector) si = stToSiTi(uvToST(u)) ti = stToSiTi(uvToST(v)) // If the levels corresponding to si,ti are not equal, then p is not a cell // center. The si,ti values of 0 and maxSiTi need to be handled specially // because they do not correspond to cell centers at any valid level; they // are mapped to level -1 by the code at the end. level = maxLevel - findLSBSetNonZero64(uint64(si|maxSiTi)) if level < 0 || level != maxLevel-findLSBSetNonZero64(uint64(ti|maxSiTi)) { return face, si, ti, -1 } // In infinite precision, this test could be changed to ST == SiTi. However, // due to rounding errors, uvToST(xyzToFaceUV(faceUVToXYZ(stToUV(...)))) is // not idempotent. On the other hand, the center is computed exactly the same // way p was originally computed (if it is indeed the center of a Cell); // the comparison can be exact. if p.Vector == faceSiTiToXYZ(face, si, ti).Normalize() { return face, si, ti, level } return face, si, ti, -1 } // uNorm returns the right-handed normal (not necessarily unit length) for an // edge in the direction of the positive v-axis at the given u-value on // the given face. (This vector is perpendicular to the plane through // the sphere origin that contains the given edge.) func uNorm(face int, u float64) r3.Vector { switch face { case 0: return r3.Vector{u, -1, 0} case 1: return r3.Vector{1, u, 0} case 2: return r3.Vector{1, 0, u} case 3: return r3.Vector{-u, 0, 1} case 4: return r3.Vector{0, -u, 1} default: return r3.Vector{0, -1, -u} } } // vNorm returns the right-handed normal (not necessarily unit length) for an // edge in the direction of the positive u-axis at the given v-value on // the given face. func vNorm(face int, v float64) r3.Vector { switch face { case 0: return r3.Vector{-v, 0, 1} case 1: return r3.Vector{0, -v, 1} case 2: return r3.Vector{0, -1, -v} case 3: return r3.Vector{v, -1, 0} case 4: return r3.Vector{1, v, 0} default: return r3.Vector{1, 0, v} } } // faceUVWAxes are the U, V, and W axes for each face. var faceUVWAxes = [6][3]Point{ {Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{1, 0, 0}}}, {Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{0, 1, 0}}}, {Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{0, 0, 1}}}, {Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{-1, 0, 0}}}, {Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, -1, 0}}}, {Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, 0, -1}}}, } // faceUVWFaces are the precomputed neighbors of each face. var faceUVWFaces = [6][3][2]int{ {{4, 1}, {5, 2}, {3, 0}}, {{0, 3}, {5, 2}, {4, 1}}, {{0, 3}, {1, 4}, {5, 2}}, {{2, 5}, {1, 4}, {0, 3}}, {{2, 5}, {3, 0}, {1, 4}}, {{4, 1}, {3, 0}, {2, 5}}, } // uvwAxis returns the given axis of the given face. func uvwAxis(face, axis int) Point { return faceUVWAxes[face][axis] } // uvwFaces returns the face in the (u,v,w) coordinate system on the given axis // in the given direction. func uvwFace(face, axis, direction int) int { return faceUVWFaces[face][axis][direction] } // uAxis returns the u-axis for the given face. func uAxis(face int) Point { return uvwAxis(face, 0) } // vAxis returns the v-axis for the given face. func vAxis(face int) Point { return uvwAxis(face, 1) } // Return the unit-length normal for the given face. func unitNorm(face int) Point { return uvwAxis(face, 2) }