// Copyright 2017 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "math" "github.com/golang/geo/r1" "github.com/golang/geo/r3" "github.com/golang/geo/s1" ) // RectBounder is used to compute a bounding rectangle that contains all edges // defined by a vertex chain (v0, v1, v2, ...). All vertices must be unit length. // Note that the bounding rectangle of an edge can be larger than the bounding // rectangle of its endpoints, e.g. consider an edge that passes through the North Pole. // // The bounds are calculated conservatively to account for numerical errors // when points are converted to LatLngs. More precisely, this function // guarantees the following: // Let L be a closed edge chain (Loop) such that the interior of the loop does // not contain either pole. Now if P is any point such that L.ContainsPoint(P), // then RectBound(L).ContainsPoint(LatLngFromPoint(P)). type RectBounder struct { // The previous vertex in the chain. a Point // The previous vertex latitude longitude. aLL LatLng bound Rect } // NewRectBounder returns a new instance of a RectBounder. func NewRectBounder() *RectBounder { return &RectBounder{ bound: EmptyRect(), } } // maxErrorForTests returns the maximum error in RectBound provided that the // result does not include either pole. It is only used for testing purposes func (r *RectBounder) maxErrorForTests() LatLng { // The maximum error in the latitude calculation is // 3.84 * dblEpsilon for the PointCross calculation // 0.96 * dblEpsilon for the Latitude calculation // 5 * dblEpsilon added by AddPoint/RectBound to compensate for error // ----------------- // 9.80 * dblEpsilon maximum error in result // // The maximum error in the longitude calculation is dblEpsilon. RectBound // does not do any expansion because this isn't necessary in order to // bound the *rounded* longitudes of contained points. return LatLng{10 * dblEpsilon * s1.Radian, 1 * dblEpsilon * s1.Radian} } // AddPoint adds the given point to the chain. The Point must be unit length. func (r *RectBounder) AddPoint(b Point) { bLL := LatLngFromPoint(b) if r.bound.IsEmpty() { r.a = b r.aLL = bLL r.bound = r.bound.AddPoint(bLL) return } // First compute the cross product N = A x B robustly. This is the normal // to the great circle through A and B. We don't use RobustSign // since that method returns an arbitrary vector orthogonal to A if the two // vectors are proportional, and we want the zero vector in that case. n := r.a.Sub(b.Vector).Cross(r.a.Add(b.Vector)) // N = 2 * (A x B) // The relative error in N gets large as its norm gets very small (i.e., // when the two points are nearly identical or antipodal). We handle this // by choosing a maximum allowable error, and if the error is greater than // this we fall back to a different technique. Since it turns out that // the other sources of error in converting the normal to a maximum // latitude add up to at most 1.16 * dblEpsilon, and it is desirable to // have the total error be a multiple of dblEpsilon, we have chosen to // limit the maximum error in the normal to be 3.84 * dblEpsilon. // It is possible to show that the error is less than this when // // n.Norm() >= 8 * sqrt(3) / (3.84 - 0.5 - sqrt(3)) * dblEpsilon // = 1.91346e-15 (about 8.618 * dblEpsilon) nNorm := n.Norm() if nNorm < 1.91346e-15 { // A and B are either nearly identical or nearly antipodal (to within // 4.309 * dblEpsilon, or about 6 nanometers on the earth's surface). if r.a.Dot(b.Vector) < 0 { // The two points are nearly antipodal. The easiest solution is to // assume that the edge between A and B could go in any direction // around the sphere. r.bound = FullRect() } else { // The two points are nearly identical (to within 4.309 * dblEpsilon). // In this case we can just use the bounding rectangle of the points, // since after the expansion done by GetBound this Rect is // guaranteed to include the (lat,lng) values of all points along AB. r.bound = r.bound.Union(RectFromLatLng(r.aLL).AddPoint(bLL)) } r.a = b r.aLL = bLL return } // Compute the longitude range spanned by AB. lngAB := s1.EmptyInterval().AddPoint(r.aLL.Lng.Radians()).AddPoint(bLL.Lng.Radians()) if lngAB.Length() >= math.Pi-2*dblEpsilon { // The points lie on nearly opposite lines of longitude to within the // maximum error of the calculation. The easiest solution is to assume // that AB could go on either side of the pole. lngAB = s1.FullInterval() } // Next we compute the latitude range spanned by the edge AB. We start // with the range spanning the two endpoints of the edge: latAB := r1.IntervalFromPoint(r.aLL.Lat.Radians()).AddPoint(bLL.Lat.Radians()) // This is the desired range unless the edge AB crosses the plane // through N and the Z-axis (which is where the great circle through A // and B attains its minimum and maximum latitudes). To test whether AB // crosses this plane, we compute a vector M perpendicular to this // plane and then project A and B onto it. m := n.Cross(r3.Vector{0, 0, 1}) mA := m.Dot(r.a.Vector) mB := m.Dot(b.Vector) // We want to test the signs of "mA" and "mB", so we need to bound // the error in these calculations. It is possible to show that the // total error is bounded by // // (1 + sqrt(3)) * dblEpsilon * nNorm + 8 * sqrt(3) * (dblEpsilon**2) // = 6.06638e-16 * nNorm + 6.83174e-31 mError := 6.06638e-16*nNorm + 6.83174e-31 if mA*mB < 0 || math.Abs(mA) <= mError || math.Abs(mB) <= mError { // Minimum/maximum latitude *may* occur in the edge interior. // // The maximum latitude is 90 degrees minus the latitude of N. We // compute this directly using atan2 in order to get maximum accuracy // near the poles. // // Our goal is compute a bound that contains the computed latitudes of // all S2Points P that pass the point-in-polygon containment test. // There are three sources of error we need to consider: // - the directional error in N (at most 3.84 * dblEpsilon) // - converting N to a maximum latitude // - computing the latitude of the test point P // The latter two sources of error are at most 0.955 * dblEpsilon // individually, but it is possible to show by a more complex analysis // that together they can add up to at most 1.16 * dblEpsilon, for a // total error of 5 * dblEpsilon. // // We add 3 * dblEpsilon to the bound here, and GetBound() will pad // the bound by another 2 * dblEpsilon. maxLat := math.Min( math.Atan2(math.Sqrt(n.X*n.X+n.Y*n.Y), math.Abs(n.Z))+3*dblEpsilon, math.Pi/2) // In order to get tight bounds when the two points are close together, // we also bound the min/max latitude relative to the latitudes of the // endpoints A and B. First we compute the distance between A and B, // and then we compute the maximum change in latitude between any two // points along the great circle that are separated by this distance. // This gives us a latitude change "budget". Some of this budget must // be spent getting from A to B; the remainder bounds the round-trip // distance (in latitude) from A or B to the min or max latitude // attained along the edge AB. latBudget := 2 * math.Asin(0.5*(r.a.Sub(b.Vector)).Norm()*math.Sin(maxLat)) maxDelta := 0.5*(latBudget-latAB.Length()) + dblEpsilon // Test whether AB passes through the point of maximum latitude or // minimum latitude. If the dot product(s) are small enough then the // result may be ambiguous. if mA <= mError && mB >= -mError { latAB.Hi = math.Min(maxLat, latAB.Hi+maxDelta) } if mB <= mError && mA >= -mError { latAB.Lo = math.Max(-maxLat, latAB.Lo-maxDelta) } } r.a = b r.aLL = bLL r.bound = r.bound.Union(Rect{latAB, lngAB}) } // RectBound returns the bounding rectangle of the edge chain that connects the // vertices defined so far. This bound satisfies the guarantee made // above, i.e. if the edge chain defines a Loop, then the bound contains // the LatLng coordinates of all Points contained by the loop. func (r *RectBounder) RectBound() Rect { return r.bound.expanded(LatLng{s1.Angle(2 * dblEpsilon), 0}).PolarClosure() } // ExpandForSubregions expands a bounding Rect so that it is guaranteed to // contain the bounds of any subregion whose bounds are computed using // ComputeRectBound. For example, consider a loop L that defines a square. // GetBound ensures that if a point P is contained by this square, then // LatLngFromPoint(P) is contained by the bound. But now consider a diamond // shaped loop S contained by L. It is possible that GetBound returns a // *larger* bound for S than it does for L, due to rounding errors. This // method expands the bound for L so that it is guaranteed to contain the // bounds of any subregion S. // // More precisely, if L is a loop that does not contain either pole, and S // is a loop such that L.Contains(S), then // // ExpandForSubregions(L.RectBound).Contains(S.RectBound). // func ExpandForSubregions(bound Rect) Rect { // Empty bounds don't need expansion. if bound.IsEmpty() { return bound } // First we need to check whether the bound B contains any nearly-antipodal // points (to within 4.309 * dblEpsilon). If so then we need to return // FullRect, since the subregion might have an edge between two // such points, and AddPoint returns Full for such edges. Note that // this can happen even if B is not Full for example, consider a loop // that defines a 10km strip straddling the equator extending from // longitudes -100 to +100 degrees. // // It is easy to check whether B contains any antipodal points, but checking // for nearly-antipodal points is trickier. Essentially we consider the // original bound B and its reflection through the origin B', and then test // whether the minimum distance between B and B' is less than 4.309 * dblEpsilon. // lngGap is a lower bound on the longitudinal distance between B and its // reflection B'. (2.5 * dblEpsilon is the maximum combined error of the // endpoint longitude calculations and the Length call.) lngGap := math.Max(0, math.Pi-bound.Lng.Length()-2.5*dblEpsilon) // minAbsLat is the minimum distance from B to the equator (if zero or // negative, then B straddles the equator). minAbsLat := math.Max(bound.Lat.Lo, -bound.Lat.Hi) // latGapSouth and latGapNorth measure the minimum distance from B to the // south and north poles respectively. latGapSouth := math.Pi/2 + bound.Lat.Lo latGapNorth := math.Pi/2 - bound.Lat.Hi if minAbsLat >= 0 { // The bound B does not straddle the equator. In this case the minimum // distance is between one endpoint of the latitude edge in B closest to // the equator and the other endpoint of that edge in B'. The latitude // distance between these two points is 2*minAbsLat, and the longitude // distance is lngGap. We could compute the distance exactly using the // Haversine formula, but then we would need to bound the errors in that // calculation. Since we only need accuracy when the distance is very // small (close to 4.309 * dblEpsilon), we substitute the Euclidean // distance instead. This gives us a right triangle XYZ with two edges of // length x = 2*minAbsLat and y ~= lngGap. The desired distance is the // length of the third edge z, and we have // // z ~= sqrt(x^2 + y^2) >= (x + y) / sqrt(2) // // Therefore the region may contain nearly antipodal points only if // // 2*minAbsLat + lngGap < sqrt(2) * 4.309 * dblEpsilon // ~= 1.354e-15 // // Note that because the given bound B is conservative, minAbsLat and // lngGap are both lower bounds on their true values so we do not need // to make any adjustments for their errors. if 2*minAbsLat+lngGap < 1.354e-15 { return FullRect() } } else if lngGap >= math.Pi/2 { // B spans at most Pi/2 in longitude. The minimum distance is always // between one corner of B and the diagonally opposite corner of B'. We // use the same distance approximation that we used above; in this case // we have an obtuse triangle XYZ with two edges of length x = latGapSouth // and y = latGapNorth, and angle Z >= Pi/2 between them. We then have // // z >= sqrt(x^2 + y^2) >= (x + y) / sqrt(2) // // Unlike the case above, latGapSouth and latGapNorth are not lower bounds // (because of the extra addition operation, and because math.Pi/2 is not // exactly equal to Pi/2); they can exceed their true values by up to // 0.75 * dblEpsilon. Putting this all together, the region may contain // nearly antipodal points only if // // latGapSouth + latGapNorth < (sqrt(2) * 4.309 + 1.5) * dblEpsilon // ~= 1.687e-15 if latGapSouth+latGapNorth < 1.687e-15 { return FullRect() } } else { // Otherwise we know that (1) the bound straddles the equator and (2) its // width in longitude is at least Pi/2. In this case the minimum // distance can occur either between a corner of B and the diagonally // opposite corner of B' (as in the case above), or between a corner of B // and the opposite longitudinal edge reflected in B'. It is sufficient // to only consider the corner-edge case, since this distance is also a // lower bound on the corner-corner distance when that case applies. // Consider the spherical triangle XYZ where X is a corner of B with // minimum absolute latitude, Y is the closest pole to X, and Z is the // point closest to X on the opposite longitudinal edge of B'. This is a // right triangle (Z = Pi/2), and from the spherical law of sines we have // // sin(z) / sin(Z) = sin(y) / sin(Y) // sin(maxLatGap) / 1 = sin(dMin) / sin(lngGap) // sin(dMin) = sin(maxLatGap) * sin(lngGap) // // where "maxLatGap" = max(latGapSouth, latGapNorth) and "dMin" is the // desired minimum distance. Now using the facts that sin(t) >= (2/Pi)*t // for 0 <= t <= Pi/2, that we only need an accurate approximation when // at least one of "maxLatGap" or lngGap is extremely small (in which // case sin(t) ~= t), and recalling that "maxLatGap" has an error of up // to 0.75 * dblEpsilon, we want to test whether // // maxLatGap * lngGap < (4.309 + 0.75) * (Pi/2) * dblEpsilon // ~= 1.765e-15 if math.Max(latGapSouth, latGapNorth)*lngGap < 1.765e-15 { return FullRect() } } // Next we need to check whether the subregion might contain any edges that // span (math.Pi - 2 * dblEpsilon) radians or more in longitude, since AddPoint // sets the longitude bound to Full in that case. This corresponds to // testing whether (lngGap <= 0) in lngExpansion below. // Otherwise, the maximum latitude error in AddPoint is 4.8 * dblEpsilon. // In the worst case, the errors when computing the latitude bound for a // subregion could go in the opposite direction as the errors when computing // the bound for the original region, so we need to double this value. // (More analysis shows that it's okay to round down to a multiple of // dblEpsilon.) // // For longitude, we rely on the fact that atan2 is correctly rounded and // therefore no additional bounds expansion is necessary. latExpansion := 9 * dblEpsilon lngExpansion := 0.0 if lngGap <= 0 { lngExpansion = math.Pi } return bound.expanded(LatLng{s1.Angle(latExpansion), s1.Angle(lngExpansion)}).PolarClosure() }