// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "fmt" "math" "github.com/golang/geo/r3" "github.com/golang/geo/s1" ) const ( northPoleLat = s1.Angle(math.Pi/2) * s1.Radian southPoleLat = -northPoleLat ) // LatLng represents a point on the unit sphere as a pair of angles. type LatLng struct { Lat, Lng s1.Angle } // LatLngFromDegrees returns a LatLng for the coordinates given in degrees. func LatLngFromDegrees(lat, lng float64) LatLng { return LatLng{s1.Angle(lat) * s1.Degree, s1.Angle(lng) * s1.Degree} } // IsValid returns true iff the LatLng is normalized, with Lat ∈ [-π/2,π/2] and Lng ∈ [-π,π]. func (ll LatLng) IsValid() bool { return math.Abs(ll.Lat.Radians()) <= math.Pi/2 && math.Abs(ll.Lng.Radians()) <= math.Pi } // Normalized returns the normalized version of the LatLng, // with Lat clamped to [-π/2,π/2] and Lng wrapped in [-π,π]. func (ll LatLng) Normalized() LatLng { lat := ll.Lat if lat > northPoleLat { lat = northPoleLat } else if lat < southPoleLat { lat = southPoleLat } lng := s1.Angle(math.Remainder(ll.Lng.Radians(), 2*math.Pi)) * s1.Radian return LatLng{lat, lng} } func (ll LatLng) String() string { return fmt.Sprintf("[%v, %v]", ll.Lat, ll.Lng) } // Distance returns the angle between two LatLngs. func (ll LatLng) Distance(ll2 LatLng) s1.Angle { // Haversine formula, as used in C++ S2LatLng::GetDistance. lat1, lat2 := ll.Lat.Radians(), ll2.Lat.Radians() lng1, lng2 := ll.Lng.Radians(), ll2.Lng.Radians() dlat := math.Sin(0.5 * (lat2 - lat1)) dlng := math.Sin(0.5 * (lng2 - lng1)) x := dlat*dlat + dlng*dlng*math.Cos(lat1)*math.Cos(lat2) return s1.Angle(2*math.Atan2(math.Sqrt(x), math.Sqrt(math.Max(0, 1-x)))) * s1.Radian } // NOTE(mikeperrow): The C++ implementation publicly exposes latitude/longitude // functions. Let's see if that's really necessary before exposing the same functionality. func latitude(p Point) s1.Angle { return s1.Angle(math.Atan2(p.Z, math.Sqrt(p.X*p.X+p.Y*p.Y))) * s1.Radian } func longitude(p Point) s1.Angle { return s1.Angle(math.Atan2(p.Y, p.X)) * s1.Radian } // PointFromLatLng returns an Point for the given LatLng. // The maximum error in the result is 1.5 * dblEpsilon. (This does not // include the error of converting degrees, E5, E6, or E7 into radians.) func PointFromLatLng(ll LatLng) Point { phi := ll.Lat.Radians() theta := ll.Lng.Radians() cosphi := math.Cos(phi) return Point{r3.Vector{math.Cos(theta) * cosphi, math.Sin(theta) * cosphi, math.Sin(phi)}} } // LatLngFromPoint returns an LatLng for a given Point. func LatLngFromPoint(p Point) LatLng { return LatLng{latitude(p), longitude(p)} } // ApproxEqual reports whether the latitude and longitude of the two LatLngs // are the same up to a small tolerance. func (ll LatLng) ApproxEqual(other LatLng) bool { return ll.Lat.ApproxEqual(other.Lat) && ll.Lng.ApproxEqual(other.Lng) }