// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package r2 import ( "fmt" "math" "github.com/golang/geo/r1" ) // Point represents a point in ℝ². type Point struct { X, Y float64 } // Add returns the sum of p and op. func (p Point) Add(op Point) Point { return Point{p.X + op.X, p.Y + op.Y} } // Sub returns the difference of p and op. func (p Point) Sub(op Point) Point { return Point{p.X - op.X, p.Y - op.Y} } // Mul returns the scalar product of p and m. func (p Point) Mul(m float64) Point { return Point{m * p.X, m * p.Y} } // Ortho returns a counterclockwise orthogonal point with the same norm. func (p Point) Ortho() Point { return Point{-p.Y, p.X} } // Dot returns the dot product between p and op. func (p Point) Dot(op Point) float64 { return p.X*op.X + p.Y*op.Y } // Cross returns the cross product of p and op. func (p Point) Cross(op Point) float64 { return p.X*op.Y - p.Y*op.X } // Norm returns the vector's norm. func (p Point) Norm() float64 { return math.Hypot(p.X, p.Y) } // Normalize returns a unit point in the same direction as p. func (p Point) Normalize() Point { if p.X == 0 && p.Y == 0 { return p } return p.Mul(1 / p.Norm()) } func (p Point) String() string { return fmt.Sprintf("(%.12f, %.12f)", p.X, p.Y) } // Rect represents a closed axis-aligned rectangle in the (x,y) plane. type Rect struct { X, Y r1.Interval } // RectFromPoints constructs a rect that contains the given points. func RectFromPoints(pts ...Point) Rect { // Because the default value on interval is 0,0, we need to manually // define the interval from the first point passed in as our starting // interval, otherwise we end up with the case of passing in // Point{0.2, 0.3} and getting the starting Rect of {0, 0.2}, {0, 0.3} // instead of the Rect {0.2, 0.2}, {0.3, 0.3} which is not correct. if len(pts) == 0 { return Rect{} } r := Rect{ X: r1.Interval{Lo: pts[0].X, Hi: pts[0].X}, Y: r1.Interval{Lo: pts[0].Y, Hi: pts[0].Y}, } for _, p := range pts[1:] { r = r.AddPoint(p) } return r } // RectFromCenterSize constructs a rectangle with the given center and size. // Both dimensions of size must be non-negative. func RectFromCenterSize(center, size Point) Rect { return Rect{ r1.Interval{Lo: center.X - size.X/2, Hi: center.X + size.X/2}, r1.Interval{Lo: center.Y - size.Y/2, Hi: center.Y + size.Y/2}, } } // EmptyRect constructs the canonical empty rectangle. Use IsEmpty() to test // for empty rectangles, since they have more than one representation. A Rect{} // is not the same as the EmptyRect. func EmptyRect() Rect { return Rect{r1.EmptyInterval(), r1.EmptyInterval()} } // IsValid reports whether the rectangle is valid. // This requires the width to be empty iff the height is empty. func (r Rect) IsValid() bool { return r.X.IsEmpty() == r.Y.IsEmpty() } // IsEmpty reports whether the rectangle is empty. func (r Rect) IsEmpty() bool { return r.X.IsEmpty() } // Vertices returns all four vertices of the rectangle. Vertices are returned in // CCW direction starting with the lower left corner. func (r Rect) Vertices() [4]Point { return [4]Point{ {r.X.Lo, r.Y.Lo}, {r.X.Hi, r.Y.Lo}, {r.X.Hi, r.Y.Hi}, {r.X.Lo, r.Y.Hi}, } } // VertexIJ returns the vertex in direction i along the X-axis (0=left, 1=right) and // direction j along the Y-axis (0=down, 1=up). func (r Rect) VertexIJ(i, j int) Point { x := r.X.Lo if i == 1 { x = r.X.Hi } y := r.Y.Lo if j == 1 { y = r.Y.Hi } return Point{x, y} } // Lo returns the low corner of the rect. func (r Rect) Lo() Point { return Point{r.X.Lo, r.Y.Lo} } // Hi returns the high corner of the rect. func (r Rect) Hi() Point { return Point{r.X.Hi, r.Y.Hi} } // Center returns the center of the rectangle in (x,y)-space func (r Rect) Center() Point { return Point{r.X.Center(), r.Y.Center()} } // Size returns the width and height of this rectangle in (x,y)-space. Empty // rectangles have a negative width and height. func (r Rect) Size() Point { return Point{r.X.Length(), r.Y.Length()} } // ContainsPoint reports whether the rectangle contains the given point. // Rectangles are closed regions, i.e. they contain their boundary. func (r Rect) ContainsPoint(p Point) bool { return r.X.Contains(p.X) && r.Y.Contains(p.Y) } // InteriorContainsPoint returns true iff the given point is contained in the interior // of the region (i.e. the region excluding its boundary). func (r Rect) InteriorContainsPoint(p Point) bool { return r.X.InteriorContains(p.X) && r.Y.InteriorContains(p.Y) } // Contains reports whether the rectangle contains the given rectangle. func (r Rect) Contains(other Rect) bool { return r.X.ContainsInterval(other.X) && r.Y.ContainsInterval(other.Y) } // InteriorContains reports whether the interior of this rectangle contains all of the // points of the given other rectangle (including its boundary). func (r Rect) InteriorContains(other Rect) bool { return r.X.InteriorContainsInterval(other.X) && r.Y.InteriorContainsInterval(other.Y) } // Intersects reports whether this rectangle and the other rectangle have any points in common. func (r Rect) Intersects(other Rect) bool { return r.X.Intersects(other.X) && r.Y.Intersects(other.Y) } // InteriorIntersects reports whether the interior of this rectangle intersects // any point (including the boundary) of the given other rectangle. func (r Rect) InteriorIntersects(other Rect) bool { return r.X.InteriorIntersects(other.X) && r.Y.InteriorIntersects(other.Y) } // AddPoint expands the rectangle to include the given point. The rectangle is // expanded by the minimum amount possible. func (r Rect) AddPoint(p Point) Rect { return Rect{r.X.AddPoint(p.X), r.Y.AddPoint(p.Y)} } // AddRect expands the rectangle to include the given rectangle. This is the // same as replacing the rectangle by the union of the two rectangles, but // is more efficient. func (r Rect) AddRect(other Rect) Rect { return Rect{r.X.Union(other.X), r.Y.Union(other.Y)} } // ClampPoint returns the closest point in the rectangle to the given point. // The rectangle must be non-empty. func (r Rect) ClampPoint(p Point) Point { return Point{r.X.ClampPoint(p.X), r.Y.ClampPoint(p.Y)} } // Expanded returns a rectangle that has been expanded in the x-direction // by margin.X, and in y-direction by margin.Y. If either margin is empty, // then shrink the interval on the corresponding sides instead. The resulting // rectangle may be empty. Any expansion of an empty rectangle remains empty. func (r Rect) Expanded(margin Point) Rect { xx := r.X.Expanded(margin.X) yy := r.Y.Expanded(margin.Y) if xx.IsEmpty() || yy.IsEmpty() { return EmptyRect() } return Rect{xx, yy} } // ExpandedByMargin returns a Rect that has been expanded by the amount on all sides. func (r Rect) ExpandedByMargin(margin float64) Rect { return r.Expanded(Point{margin, margin}) } // Union returns the smallest rectangle containing the union of this rectangle and // the given rectangle. func (r Rect) Union(other Rect) Rect { return Rect{r.X.Union(other.X), r.Y.Union(other.Y)} } // Intersection returns the smallest rectangle containing the intersection of this // rectangle and the given rectangle. func (r Rect) Intersection(other Rect) Rect { xx := r.X.Intersection(other.X) yy := r.Y.Intersection(other.Y) if xx.IsEmpty() || yy.IsEmpty() { return EmptyRect() } return Rect{xx, yy} } // ApproxEqual returns true if the x- and y-intervals of the two rectangles are // the same up to the given tolerance. func (r Rect) ApproxEqual(r2 Rect) bool { return r.X.ApproxEqual(r2.X) && r.Y.ApproxEqual(r2.Y) } func (r Rect) String() string { return fmt.Sprintf("[Lo%s, Hi%s]", r.Lo(), r.Hi()) }