// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s1 import ( "math" ) // ChordAngle represents the angle subtended by a chord (i.e., the straight // line segment connecting two points on the sphere). Its representation // makes it very efficient for computing and comparing distances, but unlike // Angle it is only capable of representing angles between 0 and π radians. // Generally, ChordAngle should only be used in loops where many angles need // to be calculated and compared. Otherwise it is simpler to use Angle. // // ChordAngle loses some accuracy as the angle approaches π radians. // There are several different ways to measure this error, including the // representational error (i.e., how accurately ChordAngle can represent // angles near π radians), the conversion error (i.e., how much precision is // lost when an Angle is converted to an ChordAngle), and the measurement // error (i.e., how accurate the ChordAngle(a, b) constructor is when the // points A and B are separated by angles close to π radians). All of these // errors differ by a small constant factor. // // For the measurement error (which is the largest of these errors and also // the most important in practice), let the angle between A and B be (π - x) // radians, i.e. A and B are within "x" radians of being antipodal. The // corresponding chord length is // // r = 2 * sin((π - x) / 2) = 2 * cos(x / 2) // // For values of x not close to π the relative error in the squared chord // length is at most 4.5 * dblEpsilon (see MaxPointError below). // The relative error in "r" is thus at most 2.25 * dblEpsilon ~= 5e-16. To // convert this error into an equivalent angle, we have // // |dr / dx| = sin(x / 2) // // and therefore // // |dx| = dr / sin(x / 2) // = 5e-16 * (2 * cos(x / 2)) / sin(x / 2) // = 1e-15 / tan(x / 2) // // The maximum error is attained when // // x = |dx| // = 1e-15 / tan(x / 2) // ~= 1e-15 / (x / 2) // ~= sqrt(2e-15) // // In summary, the measurement error for an angle (π - x) is at most // // dx = min(1e-15 / tan(x / 2), sqrt(2e-15)) // (~= min(2e-15 / x, sqrt(2e-15)) when x is small) // // On the Earth's surface (assuming a radius of 6371km), this corresponds to // the following worst-case measurement errors: // // Accuracy: Unless antipodal to within: // --------- --------------------------- // 6.4 nanometers 10,000 km (90 degrees) // 1 micrometer 81.2 kilometers // 1 millimeter 81.2 meters // 1 centimeter 8.12 meters // 28.5 centimeters 28.5 centimeters // // The representational and conversion errors referred to earlier are somewhat // smaller than this. For example, maximum distance between adjacent // representable ChordAngle values is only 13.5 cm rather than 28.5 cm. To // see this, observe that the closest representable value to r^2 = 4 is // r^2 = 4 * (1 - dblEpsilon / 2). Thus r = 2 * (1 - dblEpsilon / 4) and // the angle between these two representable values is // // x = 2 * acos(r / 2) // = 2 * acos(1 - dblEpsilon / 4) // ~= 2 * asin(sqrt(dblEpsilon / 2) // ~= sqrt(2 * dblEpsilon) // ~= 2.1e-8 // // which is 13.5 cm on the Earth's surface. // // The worst case rounding error occurs when the value halfway between these // two representable values is rounded up to 4. This halfway value is // r^2 = (4 * (1 - dblEpsilon / 4)), thus r = 2 * (1 - dblEpsilon / 8) and // the worst case rounding error is // // x = 2 * acos(r / 2) // = 2 * acos(1 - dblEpsilon / 8) // ~= 2 * asin(sqrt(dblEpsilon / 4) // ~= sqrt(dblEpsilon) // ~= 1.5e-8 // // which is 9.5 cm on the Earth's surface. type ChordAngle float64 const ( // NegativeChordAngle represents a chord angle smaller than the zero angle. // The only valid operations on a NegativeChordAngle are comparisons, // Angle conversions, and Successor/Predecessor. NegativeChordAngle = ChordAngle(-1) // RightChordAngle represents a chord angle of 90 degrees (a "right angle"). RightChordAngle = ChordAngle(2) // StraightChordAngle represents a chord angle of 180 degrees (a "straight angle"). // This is the maximum finite chord angle. StraightChordAngle = ChordAngle(4) // maxLength2 is the square of the maximum length allowed in a ChordAngle. maxLength2 = 4.0 ) // ChordAngleFromAngle returns a ChordAngle from the given Angle. func ChordAngleFromAngle(a Angle) ChordAngle { if a < 0 { return NegativeChordAngle } if a.isInf() { return InfChordAngle() } l := 2 * math.Sin(0.5*math.Min(math.Pi, a.Radians())) return ChordAngle(l * l) } // ChordAngleFromSquaredLength returns a ChordAngle from the squared chord length. // Note that the argument is automatically clamped to a maximum of 4 to // handle possible roundoff errors. The argument must be non-negative. func ChordAngleFromSquaredLength(length2 float64) ChordAngle { if length2 > maxLength2 { return StraightChordAngle } return ChordAngle(length2) } // Expanded returns a new ChordAngle that has been adjusted by the given error // bound (which can be positive or negative). Error should be the value // returned by either MaxPointError or MaxAngleError. For example: // a := ChordAngleFromPoints(x, y) // a1 := a.Expanded(a.MaxPointError()) func (c ChordAngle) Expanded(e float64) ChordAngle { // If the angle is special, don't change it. Otherwise clamp it to the valid range. if c.isSpecial() { return c } return ChordAngle(math.Max(0.0, math.Min(maxLength2, float64(c)+e))) } // Angle converts this ChordAngle to an Angle. func (c ChordAngle) Angle() Angle { if c < 0 { return -1 * Radian } if c.isInf() { return InfAngle() } return Angle(2 * math.Asin(0.5*math.Sqrt(float64(c)))) } // InfChordAngle returns a chord angle larger than any finite chord angle. // The only valid operations on an InfChordAngle are comparisons, Angle // conversions, and Successor/Predecessor. func InfChordAngle() ChordAngle { return ChordAngle(math.Inf(1)) } // isInf reports whether this ChordAngle is infinite. func (c ChordAngle) isInf() bool { return math.IsInf(float64(c), 1) } // isSpecial reports whether this ChordAngle is one of the special cases. func (c ChordAngle) isSpecial() bool { return c < 0 || c.isInf() } // isValid reports whether this ChordAngle is valid or not. func (c ChordAngle) isValid() bool { return (c >= 0 && c <= maxLength2) || c.isSpecial() } // Successor returns the smallest representable ChordAngle larger than this one. // This can be used to convert a "<" comparison to a "<=" comparison. // // Note the following special cases: // NegativeChordAngle.Successor == 0 // StraightChordAngle.Successor == InfChordAngle // InfChordAngle.Successor == InfChordAngle func (c ChordAngle) Successor() ChordAngle { if c >= maxLength2 { return InfChordAngle() } if c < 0 { return 0 } return ChordAngle(math.Nextafter(float64(c), 10.0)) } // Predecessor returns the largest representable ChordAngle less than this one. // // Note the following special cases: // InfChordAngle.Predecessor == StraightChordAngle // ChordAngle(0).Predecessor == NegativeChordAngle // NegativeChordAngle.Predecessor == NegativeChordAngle func (c ChordAngle) Predecessor() ChordAngle { if c <= 0 { return NegativeChordAngle } if c > maxLength2 { return StraightChordAngle } return ChordAngle(math.Nextafter(float64(c), -10.0)) } // MaxPointError returns the maximum error size for a ChordAngle constructed // from 2 Points x and y, assuming that x and y are normalized to within the // bounds guaranteed by s2.Point.Normalize. The error is defined with respect to // the true distance after the points are projected to lie exactly on the sphere. func (c ChordAngle) MaxPointError() float64 { // There is a relative error of (2.5*dblEpsilon) when computing the squared // distance, plus a relative error of 2 * dblEpsilon, plus an absolute error // of (16 * dblEpsilon**2) because the lengths of the input points may differ // from 1 by up to (2*dblEpsilon) each. (This is the maximum error in Normalize). return 4.5*dblEpsilon*float64(c) + 16*dblEpsilon*dblEpsilon } // MaxAngleError returns the maximum error for a ChordAngle constructed // as an Angle distance. func (c ChordAngle) MaxAngleError() float64 { return dblEpsilon * float64(c) } // Add adds the other ChordAngle to this one and returns the resulting value. // This method assumes the ChordAngles are not special. func (c ChordAngle) Add(other ChordAngle) ChordAngle { // Note that this method (and Sub) is much more efficient than converting // the ChordAngle to an Angle and adding those and converting back. It // requires only one square root plus a few additions and multiplications. // Optimization for the common case where b is an error tolerance // parameter that happens to be set to zero. if other == 0 { return c } // Clamp the angle sum to at most 180 degrees. if c+other >= maxLength2 { return StraightChordAngle } // Let a and b be the (non-squared) chord lengths, and let c = a+b. // Let A, B, and C be the corresponding half-angles (a = 2*sin(A), etc). // Then the formula below can be derived from c = 2 * sin(A+B) and the // relationships sin(A+B) = sin(A)*cos(B) + sin(B)*cos(A) // cos(X) = sqrt(1 - sin^2(X)) x := float64(c * (1 - 0.25*other)) y := float64(other * (1 - 0.25*c)) return ChordAngle(math.Min(maxLength2, x+y+2*math.Sqrt(x*y))) } // Sub subtracts the other ChordAngle from this one and returns the resulting // value. This method assumes the ChordAngles are not special. func (c ChordAngle) Sub(other ChordAngle) ChordAngle { if other == 0 { return c } if c <= other { return 0 } x := float64(c * (1 - 0.25*other)) y := float64(other * (1 - 0.25*c)) return ChordAngle(math.Max(0.0, x+y-2*math.Sqrt(x*y))) } // Sin returns the sine of this chord angle. This method is more efficient // than converting to Angle and performing the computation. func (c ChordAngle) Sin() float64 { return math.Sqrt(c.Sin2()) } // Sin2 returns the square of the sine of this chord angle. // It is more efficient than Sin. func (c ChordAngle) Sin2() float64 { // Let a be the (non-squared) chord length, and let A be the corresponding // half-angle (a = 2*sin(A)). The formula below can be derived from: // sin(2*A) = 2 * sin(A) * cos(A) // cos^2(A) = 1 - sin^2(A) // This is much faster than converting to an angle and computing its sine. return float64(c * (1 - 0.25*c)) } // Cos returns the cosine of this chord angle. This method is more efficient // than converting to Angle and performing the computation. func (c ChordAngle) Cos() float64 { // cos(2*A) = cos^2(A) - sin^2(A) = 1 - 2*sin^2(A) return float64(1 - 0.5*c) } // Tan returns the tangent of this chord angle. func (c ChordAngle) Tan() float64 { return c.Sin() / c.Cos() } // TODO(roberts): Differences from C++: // Helpers to/from E5/E6/E7 // Helpers to/from degrees and radians directly. // FastUpperBoundFrom(angle Angle)