
AUTHORIZED_FETCH

artistmarciax

Milestone C

GoToSocial Research



Introduction

From 2019-2021, I was a moderator on the Black-created Mastodon instance

playvicious.social. In the beginning, the level of inter-user conflict and trolling

targeting PlayVicious was not dissimilar from any other social media: it was

present, but not overwhelming. As we began to shift our discussion on the instance

away from racism from white people, to include intra communal issues and

anti-blackness from non-black communities of color, PlayVicious (PV) began to

face a tide of targeted harassment: screenshots of followers-only posts being shared

to private Discord servers, anti-black harassment, stalking and more.

Despite my instance suspending another instance that was targeting myself and

fellow users, users from the suspended instance were still able to see, share, and

comment on our posts. Those interactions were not visible to members of

playvicious.social, and therefore seemed to be happening behind our backs.

As a moderator, it was not clear to me how the software was handling

suspension/defederation, and why suspended instances were still able to interact

with our posts. From the perspective of a suspended instance, it may have seemed

like we’d never suspended them at all. This was counterintuitive: in a

common-sense understanding of instance suspension, if I suspend another instance

I am ensuring that we no longer have access to one another in either direction

(them to us, us to them). But to my dismay this was not the case.

In March 2020, in the hope of better understanding the situation, I posted the

following:

“Here’s what I don’t understand. In the current window opened, I can’t see

toots from a certain instance, but I know for a fact they are rb’ing toots from



members of this instance…What’s the point in suspension if the boundary is

totally avoidable?...”

Through responses to my question, I realized (along with other PV users), that in

fact, instance suspension just means that the suspending instance (instance A) is

blocked from seeing content on the suspended instance (instance B). Instance B,

however, can very well still see, boost, like, and engage with posts from instance

A. This meant that in order for two instances to be wholly cut off from one another,

they would have to engage in a mutual block (instance A suspends instance B,

instance B also suspends instance A). After more posting and discussion in the

thread, other people started to make this same realization too.

Because of this gap in the tooling, and the lack of communication about this gap,

PV was unable to mitigate cyber stalking and harassment effectively, and a

flourishing and diverse community had to shut itself down.



Authorized fetch / Secure mode

If a fediverse moderator/admin does not have a tech background, and is not in

constant communication with developers, or checking in on updates to the software

their instance uses, they may be out of the loop as to what tools are available, and

what the available tooling actually does. For moderators who do not ‘speak’ or

center tech in their lives, and are more interested in community building than

technology, it can be difficult to stay up to date with changes that are being made to

the code. This has a negative impact on the moderator’s trust in the tooling

provided, and, by extension, their ability to moderate effectively.

This is illustrated by what occurred with PlayVicious, where we were unable to

stem the tide of harassment using the provided tools. What we did not know at the

time, but only learned about much later, is that there was in fact a tool that would

have helped: authorized_fetch, also referred to as secure mode.

As explained on the website fedi.tips, authorized_fetch

“makes user blocks more effective, as it makes it harder for blocked people

on other servers to interact with public posts from people who blocked them.

(It only really helps with public posts, private posts are already protected

against trolls.)” (https://fedi.tips/authorized-fetch/)

If users at PV knew that instance blocks were not mutual and that bad actors were

still able to observe our timelines and interact with our posts, we would have then

moved to making more informed choices about our posting visibility as

individuals. In other words, followers-only posts or local timeline posts. Instead,

we made what we believed to be a safe choice but in fact our timelines were being

constantly monitored. For example, if I were to post about a topic regarding racism



or colorism, “blocked” users could still see these posts, write about it on their

timelines (which I could not see) and then other users would come back and harass

me for sub-posting about other people even though I was writing about broader

topics. This dynamic of myself and others at PV not being in control or in the

know of who could see our posts created a situation ripe for rumors, drama and

serious miscommunications.

The original set up for instance blocking was done in a counter productive way

against user safety. As a user you're implicitly consenting to certain people seeing

your post when you write a post, that's part of the whole model of social media and

it's something that most people sort of understand by now. This implicit consent

occurs because this model for posting has been around for so long, but in the

absence of clear messaging around exactly who might see your post, you're

working with insufficient information to make a clear consent decision. Especially

if blocking on established social media sites has always been for blocking the

person from seeing your own posts, not blocking yourself from seeing theirs.

Therefore, as users/mods/admins, not knowing about the initial function of a block

and moreover, no clear communication about the development and release of

authorized_fetch in 2019, meant that for a couple of years, users have not been able

to informed decisions and actively consent to who can and cannot see their posts.



Data

This section is an overview of collected data regarding authorized_fetch. First, I

provide a timeline that shows the discussion of the block function, then

authorized_fetch, and then the public posting from the developers and the release

of authorized_fetch.

The questionnaire was for admins/mods that are familiar with authorized_fetch and

its function, or for those who are not and learned about authorized_fetch through

seeing this questionnaire be posted on the fediverse.

July 2019- https://github.com/mastodon/mastodon/pull/11269

Aug 2019- https://social.sitedethib.com/@Thib/102608855195132093

Oct 2019- https://blog.joinmastodon.org/2019/10/mastodon-3.0-in-depth/

Jan 2020-

https://github.com/mastodon/documentation/commit/ae93e4b66d6f4d2a66c4788b8

3d2e6c66f47c01a

March 2020- I learn blocking an instance doesn’t constitute a mutual block

https://github.com/mastodon/mastodon/pull/11269
https://social.sitedethib.com/@Thib/102608855195132093
https://blog.joinmastodon.org/2019/10/mastodon-3.0-in-depth/
https://github.com/mastodon/documentation/commit/ae93e4b66d6f4d2a66c4788b83d2e6c66f47c01a
https://github.com/mastodon/documentation/commit/ae93e4b66d6f4d2a66c4788b83d2e6c66f47c01a


June 2023- I learn in full what authorized_fetch is







Conclusion

Prior to the research and writing of this piece, I was under the impression that

authorized_fetch was a fairly new tool, hence why myself and many other users

that I speak to on the fediverse were unaware of what authorized_fetch was.

However, after beginning to speak to more instance admins, I learned that the

feature was in fact a few years old. The lack of a proper two-way block, and its

solution of authorized_fetch being kept below the radar and not widely known to

admins, mods, and users helped to sustain a hostile environment, particularly for

queer people of color. The small pool of data that I collected demonstrates that

many admins were not made aware of authorized_fetch until years following its

release, and a few people responded that they still did not know what it is at all, or

only learned of it because of my questionnaire.

Authorized_fetch should have been better advertised and explained so that

everyone can actually understand what it does and why it is necessary and

beneficial to user experience. Despite my own inability to code, my understanding

is that there are instances that do not use it because it can create communication

issues between servers. This is a good example of why such safety tools need to be

implemented and consistently communicated from the very start. User safety is of

the utmost importance, and our ability to control and curate our experience on

social media is part of what makes the fediverse enticing and important. The

history of authorized_fetch exemplifies how the can fail users, but also shows how

important communication from developers to users can be with regard to the tools

users need to maintain safety.



References

https://designjustice.mitpress.mit.edu/pub/cfohnud7/release/4

https://www.artistmarciax.com/post/archivedcontentpost. (April 2022)

https://social.sitedethib.com/@Thib/102608855195132093

https://blog.joinmastodon.org/2019/10/mastodon-3.0-in-depth/

https://github.com/mastodon/documentation/commit/ae93e4b66d6f4d2a66c4788b8

3d2e6c66f47c01a

https://fedi.tips/authorized-fetch/

https://oliphant.social/@oliphant/110617039895509438

https://designjustice.mitpress.mit.edu/pub/cfohnud7/release/4
https://www.artistmarciax.com/post/archivedcontentpost
https://social.sitedethib.com/@Thib/102608855195132093
https://blog.joinmastodon.org/2019/10/mastodon-3.0-in-depth/
https://github.com/mastodon/documentation/commit/ae93e4b66d6f4d2a66c4788b83d2e6c66f47c01a
https://github.com/mastodon/documentation/commit/ae93e4b66d6f4d2a66c4788b83d2e6c66f47c01a
https://fedi.tips/authorized-fetch/
https://oliphant.social/@oliphant/110617039895509438

