
Advanced workshop
https://embedded-trainings.ferrous-systems.com/

Oxidize Global – 17.07.2020

https://embedded-trainings.ferrous-systems.com/


Do the setup steps (if you haven't already)

➡️ https://oxidizeconf.com/oxidize-global-setup/

https://oxidizeconf.com/oxidize-global-setup/


Install some more tools

• Folder: tools

• Run: cargo install --path usb-list

• Run: cargo install --path dk-run

• Leave those processes running in the background



Agenda

• How to work with hardware registers

• How to handle with external events

• How to debug evented applications

• How to test `no_std` code

• You will write USB firmware from scratch



The Hardware

• nRF52840 Development Kit
• USB port J2: J-Link debugger

• USB port J3: nRF52840

• 2 USB cables

• Connect both



nRF52840

• ARM Cortex-M4 processor

• 1 MB of Flash

• 256 KB of RAM

• USBD: USB 2.0 Full-Speed device

• RADIO: IEEE 802.15.4 and Bluetooth Low Energy compatible



Code organization

• Folder: advanced

• firmware/ : no_std code set up for cross compilation

• host/ : std code

• common/ : shared no_std code; can be tested on the host



Listing USB devices

• Run: usb-list

• Output: "J-Link on the nRF52840 Development Kit"

•✅ Goal: "nRF52840 on the nRF52840 Development Kit"



Hello, world!

• Folder: advanced/firmware

• File: src/bin/hello.rs

•✅ Click the "Run" button within VS code
• (if not using VS code, run cargo run --bin hello)



API documentation

• Folder: advance/firmware

• Run: cargo doc -p dk --open

• Also check the log crate (left sidebar)



Hello from RTIC

• Folder: advanced/firmware

• File: src/bin/rtic-hello.rs

• main is now split in #[init] and #[idle]

• #[init] code runs with interrupts disabled

•✅ check target/rtic-expansion.rs



Dealing with registers

• Folder: advanced/firmware

• File: src/bin/events.rs

• Peripherals are structs e.g. POWER

• Registers are struct fields e.g. intenset

• API generated by svd2rust from SVD file



Event handling

• Folder: advanced/firmware

• File: src/bin/events.rs

• Run: with J3 cable disconnected

• Then: connect cable to port J3

•✅ try adding loop {} at the end of init



Task state

• Folder: advanced/firmware

• File: src/bin/resource.rs

• Use an RTIC resource to add state to add task

• Resource in initialized in #[init] - POWER is moved into task

• Task can access the resource by reference on each invocation



USB enumeration

• USB device states: Default, Address, Configured

• Enumeration moves the device from the Default to the Address state

• Sequence of events:
• USB reset

• GET_DESCRIPTOR request

• SET_ADDRESS request



Dealing with USB events

• Folder: advanced/firmware

• File: src/bin/usb-1.rs

• USBD events: USBRESET, EP0SETUP, EP0DATADONE

• Run: with cable connected to J3

•✅ Goal: reach EP0SETUP case



USB endpoints

• For multiplexing: like TCP ports but with direction (IN / OUT)

• Identified by address and direction e.g. EP0IN, EP2OUT

• 4 types: Control, Bulk, Isochronous, Interrupt

• Control endpoint 0 is mandatory



Control transfer

• Data transfer over a control endpoint

• 3 stages
• SETUP: header that identifies the control request

• DATA: optional stage

• STATUS: device acknowledges (or not) the request



SETUP stage

• Folder: advanced/firmware

• File: src/bin/usb-2.rs

• Run: with cable connected to J3

• EP0SETUP event = SETUP data received

• SETUP data is stored in registers like BMREQUESTTYPE

•✅ parse the GET_DESCRIPTOR request in common/usb

•✅ pass SETUP data to the parser in usb-2



Unit testing

• Folder: common/usb

• File: src/lib.rs

• SETUP data parser

• "Test" button in VS code

• (or run cargo test if not using VS code)



Device descriptor

• Sent in response to GET_DESCRIPTOR/Device request

• Contains info about the device:
• product ID

• vendor ID

• number of configurations, etc.



Configurations

• Configuration = operating mode

• Single configuration example: USB mouse

• Two configurations example:
• config #0: USB printer

• config #1: Device Firmware Update mode

• We'll report one configuration



DATA stage

• Folder: advanced/firmware

• File: src/bin/usb-3.rs

• On GET_DESCRIPTOR/Device request: send device descriptor

• Use dk::usb::Ep0In abstraction
• start(), starts the transfer

• end(), must be called on EP0DATADONE done



Direct Memory Access (DMA)

• Folder: advanced/firmware

• File: src/bin/usb-3.rs

• Go to definition: dk::usb::Ep0In::start()

• Need: move data from RAM to USBD peripheral

• Lifetime requirement: copy to internal buffer

• Compiler fences are required!



Supporting more standard requests

• Folder: advanced/common/usb

• File: src/lib.rs

• TODO: GET_DESCRIPTOR Configuration

• TODO: SET_CONFIGURATION

• Solutions in advanced/common/usb/



Error handling

• Folder: advanced/firmware

• File: src/bin/usb-4.rs

• ep0setup refactored: returns Result

• On Err: stall the endpoint



Device state

• Folder: advanced/firmware

• File: src/bin/usb-4.rs

• State is now part of the task state

•✅ update handling of USBRESET event



Stalling the endpoint

• Device action to reject a host request

• Use it for invalid and unsupported requests

• API: dk::usbd::ep0stall()



SET_ADDRESS 

• Folder: advanced/firmware

• File: src/bin/usb-4.rs

• Entirely handled by the peripheral

• No action required in software

• Section 9.4.6 of the USB spec describes how to handle this



Configuration descriptor

• Total length of the configuration

• Number of interfaces

• The configuration's (non-zero) value

• Described in section 9.6.3 of the USB specification



Interfaces

• Interface = USB function

• At least one interface per configuration

• Single interface example: USB mouse with HID interface

• Two interface example: nrf52840
• iface #0: TTY ACM (virtual COM/serial) for logging

• iface #1: HID to control the radio from host



Interface descriptor

• The interface's number (zero-based index)

• Number of endpoints
• Does not include endpoints 0 IN or 0 OUT

• Described in section 9.6.5 of the USB specification



Endpoint descriptor

• Will not be used in this workshop

• Described in section 9.6.6 of the USB specification



GET_DESCRIPTOR/CONFIGURATION

• Folder: advanced/firmware

• File: src/bin/usb-4.rs

•✅ Check requested index

•✅ Respond with a single packet that contains
• Configuration descriptor

• Interface descriptor



SET_CONFIGURATION (Linux & Mac OS)

• Folder: advanced/firmware

• File: src/bin/usb-4.rs

• May be sent after SET_ADDRESS

• OK to stall for now



Idle state

• After you reach the Addressed state the bus will go idle

• Compare your logs
• linux-enumeration.txt

• macos-enumeration.txt

• windows-enumeration.txt

• Run: usb-list

• Output: "nRF52840 on the nRF52840 Development Kit"



Inspecting the descriptors

• Folder: advanced/host/print-descs

• File: src/main.rs

• Run: cargo run

• Output: Device, configuration and interface descriptors



Getting it configured (Windows)

• Change driver using Zadig

• Run modified print-descs program
• Uncomment open line



SET_CONFIGURATION

• Folder: advanced/firmware

• File: src/bin/usb-4.rs

• Section 9.4.7 of the USB spec explains how to handle this



Final checkpoint

• Should have reached the Configured state

• Compare logs
• linux-configured.txt

• macos-configured.txt

• windows-configured.txt



Things for you to check out

• String descriptors, how about adding string descriptor support to your 
firmware?
• See the workbook for suggested steps

• The RTIC book, RTIC has many features we have not covered

• usb-device, a device-agnostic USB framework


