#![no_main] #![no_std] use cortex_m::asm; use panic_log as _; // panic handler #[rtic::app(device = dk)] const APP: () = { #[init] fn init(_cx: init::Context) { let board = dk::init().unwrap(); // `POWER` is a peripheral, or register block let power = board.power; // INTENSET is one of POWER's registers // the `write()` method writes a (32-bit) value into the register power.intenset.write(|w| { // `w` is a "constructor" with methods to clear/set the bitfields of INTENSET // `w` starts with all bitfields set to their reset value // USBDETECTED is one of INTENSET's 1-bit fields w.usbdetected().set_bit() }); log::info!("USBDETECTED interrupt enabled"); // read the whole 32-bit usb supply register // the `read()` method returns a reader which can then be used to access the register content // in full or only specific bitfields (see below) // (the layout of the USBREGSTATUS register can be found in section 5.3.7.13 of the PS) let regstatus: u32 = power.usbregstatus.read().bits(); // ^^^^ complete register content log::info!("USBREGSTATUS: {:b}", regstatus); // read the 1-bit VBUSDETECT field that is part of the USBREGSTATUS register content // to show that its contents reflect our usb connection status // (the USBDETECTED event that will trigger `on_power_event()` is derived from this information) let vbusdetect: bool = power.usbregstatus.read().vbusdetect().bits(); // ^^^^^^^^^ bitfield name log::info!("USBREGSTATUS.VBUSDETECT: {}", vbusdetect); } #[idle] fn main(_cx: main::Context) -> ! { log::info!("idle: going to sleep"); // sleep in the background loop { asm::wfi(); } } #[task(binds = POWER_CLOCK)] fn on_power_event(_cx: on_power_event::Context) { log::info!("POWER event occurred"); dk::exit() } };