//! Board Support Crate (BSC) for the nRF52840 Development Kit #![deny(missing_docs)] #![no_std] use core::{ ops, fmt, sync::atomic::{self, Ordering}, time::Duration, }; use cortex_m::asm; use embedded_hal::digital::v2::{OutputPin as _, StatefulOutputPin}; use nrf52840_hal as hal; pub use hal::pac::uarte0::{ baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity}; use hal::{ gpio::{p0, Level, Output, Input, PullUp, Pin, Port, PushPull}, timer::OneShot, prelude::InputPin, uarte, }; use defmt; use defmt_rtt as _; // global logger /// Components on the board pub struct Board { /// LEDs pub leds: Leds, // 🔽 --- Button Exercise --- 🔽 /// Buttons pub buttons: Buttons, // 🔼 --- Button Exercise --- 🔼 /// Timer pub timer: Timer, // 🔽 --- UARTE Exercise --- 🔽 /// uarte interface pub uarte: Uarte, // 🔼 --- UARTE Exercise --- 🔼 } /// All LEDs on the board pub struct Leds { /// LED1: pin P0.13, green LED pub led_1: Led, /// LED2: pin P0.14, green LED pub led_2: Led, /// LED3: pin P0.15, green LED pub led_3: Led, /// LED4: pin P0.16, green LED pub led_4: Led, } /// A single LED pub struct Led { inner: Pin>, } impl Led { /// Turns on the LED pub fn on(&mut self) { defmt::trace!( "setting P{}.{} low (LED on)", port_as_char(&self.inner.port()), self.inner.pin() ); // NOTE this operations returns a `Result` but never returns the `Err` variant let _ = self.inner.set_low(); } /// Turns off the LED pub fn off(&mut self) { defmt::trace!( "setting P{}.{} high (LED off)", port_as_char(&self.inner.port()), self.inner.pin() ); // NOTE this operations returns a `Result` but never returns the `Err` variant let _ = self.inner.set_high(); } /// Returns `true` if the LED is in the OFF state pub fn is_off(&self) -> bool { self.inner.is_set_high() == Ok(true) } /// Returns `true` if the LED is in the ON state pub fn is_on(&self) -> bool { !self.is_off() } /// Toggles the state (on/off) of the LED pub fn toggle(&mut self) { if self.is_off() { self.on(); } else { self.off() } } } // 🔽 --- Button Exercise --- 🔽 /// All buttons on the board pub struct Buttons { /// BUTTON1: pin P0.11 pub b_1: Button, /// BUTTON2: pin P0.12 pub b_2: Button, /// BUTTON3: pin P0.24 pub b_3: Button, /// BUTTON4: pin P0.25 pub b_4: Button, } /// A single button pub struct Button { inner: Pin>, } impl Button { /// returns true if button is pushed pub fn is_pushed(&self) -> bool { self.inner.is_low() == Ok(true) } } // 🔼 --- Button Exercise --- 🔼 /// A timer for creating blocking delays pub struct Timer { inner: hal::Timer, } impl Timer { /// Blocks program execution for at least the specified `duration` pub fn wait(&mut self, duration: Duration) { defmt::trace!("blocking for {:?} ...", duration); // 1 cycle = 1 microsecond because the underlying HAL driver // always sets the timer to 1 MHz. const NANOS_IN_ONE_MICRO: u32 = 1_000; let subsec_micros = duration.subsec_nanos() / NANOS_IN_ONE_MICRO; if subsec_micros != 0 { self.inner.delay(subsec_micros); } const MICROS_IN_ONE_SEC: u32 = 1_000_000; // maximum number of seconds that fit in a single `delay` call without overflowing the `u32` // argument const MAX_SECS: u32 = u32::MAX / MICROS_IN_ONE_SEC; let mut secs = duration.as_secs(); while secs != 0 { let cycles = if secs > MAX_SECS as u64 { secs -= MAX_SECS as u64; MAX_SECS * MICROS_IN_ONE_SEC } else { let cycles = secs as u32 * MICROS_IN_ONE_SEC; secs = 0; cycles }; self.inner.delay(cycles) } defmt::trace!("... DONE"); } } impl ops::Deref for Timer { type Target = hal::Timer; fn deref(&self) -> &Self::Target { &self.inner } } impl ops::DerefMut for Timer { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.inner } } // 🔽 --- UARTE Exercise --- 🔽 /// Uarte peripheral pub struct Uarte { inner: hal::Uarte, } impl fmt::Write for Uarte { fn write_str(&mut self, s: &str) -> fmt::Result { // Copy all data into an on-stack buffer so we never try to EasyDMA from // flash. let mut buf: [u8; 16] = [0; 16]; for block in s.as_bytes().chunks(16) { buf[..block.len()].copy_from_slice(block); self.inner.write(&buf[..block.len()]).map_err(|_| fmt::Error)?; } Ok(()) } } // 🔼 --- UARTE Exercise --- 🔼 /// Initializes the board /// /// This return an `Err`or if called more than once pub fn init() -> Result { if let Some(periph) = hal::pac::Peripherals::take() { let pins = p0::Parts::new(periph.P0); // NOTE LEDs turn on when the pin output level is low let led_1 = pins.p0_13.degrade().into_push_pull_output(Level::High); let led_2 = pins.p0_14.degrade().into_push_pull_output(Level::High); let led_3 = pins.p0_15.degrade().into_push_pull_output(Level::High); let led_4 = pins.p0_16.degrade().into_push_pull_output(Level::High); // 🔽 --- Button Exercise --- 🔽 // Buttons let b_1 = pins.p0_11.degrade().into_pullup_input(); let b_2 = pins.p0_12.degrade().into_pullup_input(); let b_3 = pins.p0_24.degrade().into_pullup_input(); let b_4 = pins.p0_25.degrade().into_pullup_input(); // 🔼 --- Button Exercise --- 🔼 defmt::debug!("I/O pins have been configured for digital output"); let timer = hal::Timer::new(periph.TIMER0); // 🔽 --- UARTE Exercise --- 🔽 // Uarte let pins = hal::uarte::Pins { rxd: pins.p0_08.degrade().into_floating_input(), txd: pins.p0_06.degrade().into_push_pull_output(Level::High), cts: None, rts: None, }; let uarte = hal::uarte::Uarte::new(periph.UARTE1, pins, Parity::EXCLUDED, Baudrate::BAUD115200); // 🔼 --- UARTE Exercise --- 🔼 Ok(Board { leds: Leds { led_1: Led { inner: led_1 }, led_2: Led { inner: led_2 }, led_3: Led { inner: led_3 }, led_4: Led { inner: led_4 }, }, // 🔽 --- Button Exercise --- 🔽 buttons: Buttons { b_1: Button { inner: b_1}, b_2: Button { inner: b_2}, b_3: Button { inner: b_3}, b_4: Button { inner: b_4}, }, // 🔼 --- Button Exercise --- 🔼 timer: Timer { inner: timer }, // 🔽 --- UARTE Exercise --- 🔽 uarte: Uarte { inner: uarte }, // 🔼 --- UARTE Exercise --- 🔼 }) } else { Err(()) } } /// Exits the application when the program is executed through the `probe-run` Cargo runner pub fn exit() -> ! { unsafe { // turn off the USB D+ pull-up before pausing the device with a breakpoint // this disconnects the nRF device from the USB host so the USB host won't attempt further // USB communication (and see an unresponsive device). probe-run will also reset the nRF's // USBD peripheral when it sees the device in a halted state which has the same effect as // this line but that can take a while and the USB host may issue a power cycle of the USB // port / hub / root in the meantime, which can bring down the probe and break probe-run const USBD_USBPULLUP: *mut u32 = 0x4002_7504 as *mut u32; USBD_USBPULLUP.write_volatile(0) } defmt::println!("`dk::exit()` called; exiting ..."); // force any pending memory operation to complete before the BKPT instruction that follows atomic::compiler_fence(Ordering::SeqCst); loop { asm::bkpt() } } // Helper functions fn port_as_char(port: &Port) -> char { match port { Port::Port0 => '0', Port::Port1 => '1', } }