use std::cell::UnsafeCell; use std::fmt; use std::fmt::Write; use std::rc::Rc; use std::time::{Duration, Instant}; use actix_rt::time::{delay, delay_for, Delay}; use bytes::BytesMut; use futures::{future, FutureExt}; use time; // "Sun, 06 Nov 1994 08:49:37 GMT".len() const DATE_VALUE_LENGTH: usize = 29; #[derive(Debug, PartialEq, Clone, Copy)] /// Server keep-alive setting pub enum KeepAlive { /// Keep alive in seconds Timeout(usize), /// Relay on OS to shutdown tcp connection Os, /// Disabled Disabled, } impl From for KeepAlive { fn from(keepalive: usize) -> Self { KeepAlive::Timeout(keepalive) } } impl From> for KeepAlive { fn from(keepalive: Option) -> Self { if let Some(keepalive) = keepalive { KeepAlive::Timeout(keepalive) } else { KeepAlive::Disabled } } } /// Http service configuration pub struct ServiceConfig(Rc); struct Inner { keep_alive: Option, client_timeout: u64, client_disconnect: u64, ka_enabled: bool, timer: DateService, } impl Clone for ServiceConfig { fn clone(&self) -> Self { ServiceConfig(self.0.clone()) } } impl Default for ServiceConfig { fn default() -> Self { Self::new(KeepAlive::Timeout(5), 0, 0) } } impl ServiceConfig { /// Create instance of `ServiceConfig` pub fn new( keep_alive: KeepAlive, client_timeout: u64, client_disconnect: u64, ) -> ServiceConfig { let (keep_alive, ka_enabled) = match keep_alive { KeepAlive::Timeout(val) => (val as u64, true), KeepAlive::Os => (0, true), KeepAlive::Disabled => (0, false), }; let keep_alive = if ka_enabled && keep_alive > 0 { Some(Duration::from_secs(keep_alive)) } else { None }; ServiceConfig(Rc::new(Inner { keep_alive, ka_enabled, client_timeout, client_disconnect, timer: DateService::new(), })) } #[inline] /// Keep alive duration if configured. pub fn keep_alive(&self) -> Option { self.0.keep_alive } #[inline] /// Return state of connection keep-alive funcitonality pub fn keep_alive_enabled(&self) -> bool { self.0.ka_enabled } #[inline] /// Client timeout for first request. pub fn client_timer(&self) -> Option { let delay_time = self.0.client_timeout; if delay_time != 0 { Some(delay( self.0.timer.now() + Duration::from_millis(delay_time), )) } else { None } } /// Client timeout for first request. pub fn client_timer_expire(&self) -> Option { let delay = self.0.client_timeout; if delay != 0 { Some(self.0.timer.now() + Duration::from_millis(delay)) } else { None } } /// Client disconnect timer pub fn client_disconnect_timer(&self) -> Option { let delay = self.0.client_disconnect; if delay != 0 { Some(self.0.timer.now() + Duration::from_millis(delay)) } else { None } } #[inline] /// Return keep-alive timer delay is configured. pub fn keep_alive_timer(&self) -> Option { if let Some(ka) = self.0.keep_alive { Some(delay(self.0.timer.now() + ka)) } else { None } } /// Keep-alive expire time pub fn keep_alive_expire(&self) -> Option { if let Some(ka) = self.0.keep_alive { Some(self.0.timer.now() + ka) } else { None } } #[inline] pub(crate) fn now(&self) -> Instant { self.0.timer.now() } #[doc(hidden)] pub fn set_date(&self, dst: &mut BytesMut) { let mut buf: [u8; 39] = [0; 39]; buf[..6].copy_from_slice(b"date: "); self.0 .timer .set_date(|date| buf[6..35].copy_from_slice(&date.bytes)); buf[35..].copy_from_slice(b"\r\n\r\n"); dst.extend_from_slice(&buf); } pub(crate) fn set_date_header(&self, dst: &mut BytesMut) { self.0 .timer .set_date(|date| dst.extend_from_slice(&date.bytes)); } } #[derive(Copy, Clone)] struct Date { bytes: [u8; DATE_VALUE_LENGTH], pos: usize, } impl Date { fn new() -> Date { let mut date = Date { bytes: [0; DATE_VALUE_LENGTH], pos: 0, }; date.update(); date } fn update(&mut self) { self.pos = 0; write!(self, "{}", time::at_utc(time::get_time()).rfc822()).unwrap(); } } impl fmt::Write for Date { fn write_str(&mut self, s: &str) -> fmt::Result { let len = s.len(); self.bytes[self.pos..self.pos + len].copy_from_slice(s.as_bytes()); self.pos += len; Ok(()) } } #[derive(Clone)] struct DateService(Rc); struct DateServiceInner { current: UnsafeCell>, } impl DateServiceInner { fn new() -> Self { DateServiceInner { current: UnsafeCell::new(None), } } fn reset(&self) { unsafe { (&mut *self.current.get()).take() }; } fn update(&self) { let now = Instant::now(); let date = Date::new(); *(unsafe { &mut *self.current.get() }) = Some((date, now)); } } impl DateService { fn new() -> Self { DateService(Rc::new(DateServiceInner::new())) } fn check_date(&self) { if unsafe { (&*self.0.current.get()).is_none() } { self.0.update(); // periodic date update let s = self.clone(); actix_rt::spawn(delay_for(Duration::from_millis(500)).then(move |_| { s.0.reset(); future::ready(()) })); } } fn now(&self) -> Instant { self.check_date(); unsafe { (&*self.0.current.get()).as_ref().unwrap().1 } } fn set_date(&self, mut f: F) { self.check_date(); f(&unsafe { (&*self.0.current.get()).as_ref().unwrap().0 }) } } #[cfg(test)] mod tests { use super::*; #[test] fn test_date_len() { assert_eq!(DATE_VALUE_LENGTH, "Sun, 06 Nov 1994 08:49:37 GMT".len()); } #[actix_rt::test] async fn test_date() { let settings = ServiceConfig::new(KeepAlive::Os, 0, 0); let mut buf1 = BytesMut::with_capacity(DATE_VALUE_LENGTH + 10); settings.set_date(&mut buf1); let mut buf2 = BytesMut::with_capacity(DATE_VALUE_LENGTH + 10); settings.set_date(&mut buf2); assert_eq!(buf1, buf2); } }